
Implementation of a Flexible Web Framework for

Simulating Python System Models

Demonstrated on Solar Electric Water Heating System Model

In partial fulfillment of the requirements for the degree

Master of Science

at the department of

Electrical and Computer Engineering

of the

Technical University of Munich

Advisor (external) Dipl.-Ing. Milica Grahovac

Lawrence Berkeley National Laboratory (California, USA)

Advisor (TUM) Prof. Dr. rer. nat. Thomas Hamacher

Chair of Renewable and Sustainable Energy Systems

Submitted by: Hannes Bohnengel

110 Channel St.

San Francisco, CA-94158, USA

Submitted on: Munich, March 29, 2019

Abstract

In the scope of this Master’s Thesis a flexible web framework based on Django has been

implemented. With this web framework complex, Python-based system models can be de-

ployed through a web browser. This includes the configuration of component parameters,

the set-up of input data like weather data or load profiles, the invocation of system simula-

tions, as well as an interactive visualization of the results for further analyses. The benefits

of the web framework have been demonstrated on the example of a Solar Water Heat-

ing (SWH) system model developed at Lawrence Berkeley National Laboratory (LBNL)

in California [1]. As additional research adjacent to the SWH project, the Solar Electric

System has been implemented within this thesis. The results of this thesis include a sim-

plified approach for conducting system simulations of Python system models, leading to

shorter development cycles and a refined method for analyzing simulation results.

Kurzfassung

Im Rahmen dieser Masterarbeit wurde ein flexibles Web Framework basierend auf Django

entwickelt. Mit diesem Web Framework ist es möglich komplexe, auf Python basierende

Systemmodelle durch einen Web Browser einzusetzen. Dies umfasst die Konfiguration

von Komponenten-Parametern, die Definition von Eingabedaten wie Wetterdaten oder

Lastprofile, das Starten von Systemsimulationen und die interaktive Visualisierung von

Simulationsergebnissen für weitere Analysen. Die Vorteile des Web Frameworks wurden

anhand des Beispiels eines Solar-Warmwasser (Solar Water Heating (SWH)) Systemmod-

els, das am Lawrence Berkeley National Laboratory (LBNL) in Kalifornien [1] entwickelt

wurde, demonstriert. Als ergänzende Forschungsarbeit zum SWH Projekt wurde das

Solar Electric System im Rahmen dieser Arbeit entwickelt. Zu den Ergebnissen dieser

Arbeit gehört ein vereinfachter Prozess zur Durchführung von Systemsimulationen von

Python Systemmodellen, was zu beschleunigten Entwicklungszyklen und verbesserten

Analysemethoden der Simulationsergebnisse führt.

Statement of Academic Integrity

I, Hannes Bohnengel, hereby confirm that the attached thesis,

Implementation of a Flexible Web Framework for

Simulating Python System Models

was written independently by me without the use of any sources or aids beyond those

cited, and all passages and ideas taken from other sources are indicated in the text and

given the corresponding citation.

I confirm to respect the ”Code of Conduct for Safeguarding Good Academic Practice and

Procedures in Cases of Academic Misconduct at Technische Universität München, 2015”,

as can be read on the website of the Equal Opportunity Office of TUM.

I agree to the further use of my work and its results (including programs produced and

methods used) for research and instructional purposes.

I have not previously submitted this thesis for academic credit.

March 29, 2019

Date Signature (Hannes Bohnengel)

Declaration for the Transfer

of the Thesis

I agree to the transfer of this thesis to:

• Students currently or in future writing their thesis at the chair:

� Flat rate by employees

�XOnly after particular prior consultation.

• Present or future employees at the chair:

� Flat rate by employees

�XOnly after particular prior consultation.

My copyright and personal right of use remain unaffected.

March 29, 2019

Date Signature (Hannes Bohnengel)

Contents
1 Introduction . 1

1.1 Motivation . 1

1.2 Goals and Requirements . 3

1.3 Thesis Structure . 4

2 Essentials . 5

2.1 Django Web Framework . 5

2.2 Solar Water Heating Project . 7

2.2.1 Overview . 7

2.2.2 System Modeling . 7

2.2.3 Solar Billing – True-Up Statement 8

3 Solar Electric System Implementation . 10

3.1 System Overview . 10

3.2 Component Models . 11

3.2.1 Photovoltaic . 12

3.2.2 Inverter . 14

3.2.3 Heat Pump . 15

3.2.4 Electric Resistance Heater . 18

3.2.5 Heat Pump Tank . 19

3.3 Solar Electric System Model . 19

4 Web Framework Implementation . 23

4.1 Project Structure . 23

4.2 Integration of SWH code . 29

4.3 Models . 32

4.3.1 Component . 34

4.3.2 Climate . 38

4.3.3 Household . 40

4.3.4 Configuration . 41

4.3.5 Visualization . 44

4.4 Set-Up . 47

4.5 Usage . 49

5 Results and Outlook . 51

5.1 Simulation Results of Solar Electric System 51

5.2 Next Steps for Web Framework . 55

5.3 Conclusions . 58

Acknowledgments . I

List of Figures . II

List of Tables . IV

List of Symbols . V

Abbreviations . VI

Appendix A SAM PVWatts Model ConfigurationVII

Appendix B Heat Pump Specifications .VIII

Appendix C Bootstrap Core Libraries . IX

Appendix D Django Model Administration Pages X

Appendix E Solar Electric System - SimulationsXIII

References .XV

1 Introduction

This chapter introduces the topic and provides an overview about the motivation of this

Master’s Thesis. In addition to that, its structure and contents are explained further.

1.1 Motivation

On June 27, 2018, Python 3.7 was released about 17 years after its very first appearance

in February 1991 [2], [3]. As of March 18, 2019 there are 172,467 projects, 1,252,979

releases backed by 312,427 users [4] and according to [5] "Python has a solid claim to

being the fastest-growing major programming language". Just to name a few of the

most significant reasons for this: The clean code syntax with its dynamic type system is

leading to a better readability and maintainability, even in large code bases. Due to the

fact that Python is an interpreted programming language, the code does not have to be

recompiled after every edit, it can just be executed and the effects can be seen immediately.

Compared to other general purpose programming languages, Python comes with a rich set

of standard libraries which enables the fast development of powerful applications with less

lines of code. Lastly, there is a huge community around the extensive number of Python-

based open-source projects found in the web covering topics like machine learning, web

development, multimedia processing, blockchain, and data science [6].

Although there are various software tools like Jupyter Notebook [7] or PyCharm [8] avail-

able in order to simplify the development of Python projects, usually the command line

interface and some kind of text editor are used rather frequently in order to edit parame-

ters and run simulations. This switching back and forth between multiple user interfaces

takes the developer unnecessary time.

In Figure 1.1 the current development framework as used in the Solar Water Heating

(SWH) project developed by a team at Lawrence Berkeley National Laboratory (LBNL)

in California, can be seen [1]. It shows a code editor in the background, a terminal on the

right side and two static images with simulation results on the left side. In order to run a

simulation with different parameters, the user would have to navigate to the respective file

1

in the code editor, edit the source code, invoke the simulation in the terminal (by typing

in a rather long command) and open the generated images showing plots of time series.

Especially when doing this iteratively, a lot of time is spent on setting up the simulation.

Also, the user needs to be aware where exactly which parameter is defined in the source

code and what commands to run different types of simulations.

Figure 1.1: Python SWH modeling framework developed by the team at LBNL [1]

One approach to simplify the mentioned work flow, is to reduce the number of user

interfaces to one, the web browser. Figure 1.2 shows a mock-up of a browser-based

user interface, where the user can set up a system configuration, invoke its simulation

and analyze the results in an interactive way. By enabling this, the user not only saves

time, but also the overall work flow is greatly simplified. Compared to the above seen

framework, no knowledge of the source code is necessary.

Figure 1.2: Browser based interactive interface (mock-up)

2

Another big advantage of a browser-based user interface is the option of sharing the access

to the system model with or demonstrating it to collaborators or project stakeholders,

even across the web, if the application is hosted on a server with access to the Internet.

Since this new browser-based interface could just be plugged into the already existing

system model, no alterations to the system code base are necessary. Due to the flexibility

of existing open-source web frameworks, it would be possible to use the browser-based

user interface during the development of complex Python system models and speed up

their development-validation cycle.

1.2 Goals and Requirements

The overall goal of this thesis is to develop a flexible web framework in order to simplify

the development of complex Python system models in terms of generating an enhanced

usability, reducing the time spent on development-validation iterations and improved

analyzability of simulation results. In the following this is broken down into more specific

subgoals and requirements of the flexible web framework:

• One requirement is to minimize the interaction with the project code base as much

as possible. That means, all system parameters need to be accessible through the

front-end of the web framework. Also, the user should be able to start system

simulations and see their results without having to switch the user-interface.

• Analyzing simulation results is an important part of the development process, so by

using modern web technologies, the web framework has to offer the user an interac-

tive visualization to extract insights about the simulated system’s functionality and

performance.

• Since the development of complex system models is generally conducted over a longer

period of time and system design and requirements change during the project life

time, the implemented web framework needs to be adaptable and scalable with no

or minimum changes of its source code. This enables the developers to focus on the

core aspects of their work.

3

• By using a web browser as primary user-interface, the usability of the web framework

should not depend on the user’s platform. This includes the three major operating

systems Windows, macOS and Linux. Generally, also mobile platforms like smart-

phones or tablets are expected to be usable as client of the flexible web framework,

but in the scope of this thesis, this is not included as a necessary requirement.

• The web framework should provide a simple user interface, where no detailed knowl-

edge of the incorporated system model is necessary. This way it is possible to use

the web framework as a demonstration platform of a Python system model to all

collaborators and stakeholders involved in the project.

1.3 Thesis Structure

This thesis has been structured in five chapters. Chapter 1 introduces the topic and the

motivation why it is worth being dealt with. The project goals and requirements are

defined and a general structure of the thesis is being provided.

In Chapter 2, the author explains the basic functionality of the chosen open-source frame-

work Django which is used as a platform to implement the flexible web framework as main

part of the thesis. Additionally, the SWH project is being introduced including the project

goals, the system modeling architecture and a short overview about how solar billing works

in California for customers of the Pacific Gas and Electric (PGE) Company.

Chapter 3 provides the details about the model and system implementation of the Solar

Electric System which has been carried out as additional research adjacent to the SWH

project conducted at LBNL [1].

The main work of this thesis is presented in Chapter 4, the implementation of the flexible

web framework. First the project structure is introduced before the models are explained

in further details. The chapter concludes with providing instructions on how to set up

and use the web framework.

Chapter 5 is summarizing the results of this thesis and outlines a list of potential features

for consideration during future work on the web framework.

4

2 Essentials

In this chapter the web framework Django [9] is introduced and some insights about its

general structure and function are outlined. Furthermore, an overview about the SWH

project is provided and it is explained how solar billing works for customers of PGE in

California.

2.1 Django Web Framework

Citing directly from the developers [9] ”Django is a high-level Python Web framework

that encourages rapid development and clean, pragmatic design.” It belongs to one of

the widely used Python-based full-stack web frameworks. As of March 18, 2019 there

are 5337 websites based on Django [10] among which are popular sites like Instagram,

Mozilla, Pinterest and National Geographic [9].

Django follows the Model View Controller (MVC) architectural pattern, meaning that a

user interfacing system can be divided into three main parts. According to the authors of

[11] the model describes the state and behavior of the central components of the applica-

tion. Views are responsible for ”everything graphical”, i.e. the layer the user is interacting

with. The interconnection between a model and a view is defined in a controller, handling

data exchange and processing.

Figure 2.1 shows the general structure of a Django project consisting of two applica-

tions (indicated in green and orange). Every application is built up independently and

conceptually follows the MVC paradigm. Though, in Django it is referred to as Model

Template View (MTV) pattern, where a Django view is representing the role of the con-

troller and a Django template provides the function of a view according to the original

definition [12]. Since Django is a web framework with the purpose of building web ap-

plications, the browser is the central user interface and next to the template a Uniform

Resource Location (URL) dispatcher makes up the front-end layer.

5

Model
(App 1)

Model
(App 2)

View
(App 1)

View
(App 2)

Template
(App 1)

URL
Dispatcher

(App 1)

Browser

Template
(App 2)

URL
Dispatcher

(App 2)

Database

Figure 2.1: Django project architecture [13]

To handle a Hypertext Transfer Protocol (HTTP) request on a Django-powered site, the

URL dispatcher, which is more or less a mapping between URLs and view functions,

entirely defined in Python code, derives which view function to invoke [14]. In this view

function the required data is retrieved from the model and if it is found in the database, the

content of the page is returned by using Django’s template system [15]. If the content is

not found, the HTTP response code ”404 - Not Found” is returned. Django’s template

system is not required to be used, but offers a powerful way to dynamically generate

Hypertext Markup Language (HTML) content, which can be rendered in the browser.

This is done, by defining a static part of the HTML content and a dynamically created part

by using a special syntax. This way, the final HTML content as rendered in the browser

is compiled on-demand by Django including the data retrieved from the model [16].

In order to avoid complicated database queries, which vary for different database back-

ends, Django models offer a unique interface to store data, independently from the used

database back-end. By inheriting from the Python class django.db.models.Model pro-

vided by Django’s core framework, every Django model class has access to specific model

fields and functions. Every model object is mapped to a table in the database by Django’s

inbuilt Object Relational Mapper (ORM). This way, the user is able to describe the layout

of the database, exclusively by using Python classes and their attributes [17].

6

2.2 Solar Water Heating Project

2.2.1 Overview

The SWH project is conducted at LBNL in Berkeley, California and has been commis-

sioned by the California Energy Commission (CEC) [1]. At the time of writing it is still

under development and the final report has not been published yet. Part of the project is

to investigate the benefits of scale for community compared to individual end-use infras-

tructure of residential SWH systems in California. Scale is meant for both the design of

the SWH system, which includes the sizing and the performance parameters of the used

components, and the number and size of the supplied households, which is represented by

the hourly hot water draw profile. The project outcomes are expected to provide insights

on how to optimally deploy SWH systems in California in order to reduce over-all costs

and greenhouse gas emissions.

In [18] the authors develop multiple scenarios to decarbonize residential water heating in

California and highlight Heat Pump Water Heaters (HPWHs) and solar thermal water

heaters as one of the most promising water heating technologies. Both of theses systems

have been chosen by the team at LBNL as example SWH systems for being modeled

and further analyzed. In the scope of the SWH project (and thus also in this thesis) the

system based on a HPWH is being referred to as Solar Electric System and is described

in more detail in Section 3. The system based on a thermal water heating system is called

Solar Thermal System and is not being discussed in more detail in this thesis.

2.2.2 System Modeling

In the scope of the SWH project, a Python-based system model has been developed.

Similar as in [19], [20], and [21] the system is split into functional components, each

modeled through simplified, empirical model equations. These components have been

categorized into three classes according to their main purpose. Every component which is

converting energy from one form to another belongs to the Converter class. The Storage

class describes components used for storing energy and the Distribution class contains

components involved in the distribution of energy (e.g. in the form of hot water or

7

electricity). In Table 2.1 an overview of the classes and a representative set of their

components is given, where the components which are used to model the Solar Electric

System are highlighted yellow.

Table 2.1: System component classes (Solar Electric System components are highlighted) [1]

Class Component

Converter Photovoltaic Panel

Heat Pump

Solar Collector

Gas Burner

Electric Resistance Heater

Storage Heat Pump Tank

Solar Thermal Tank

Distribution Inverter

Solar Pump

Distribution Pump

Piping

The system model is provided with external input data which consists of weather data

(containing the solar irradiation, the dry and wet bulb air temperature, and the main inlet

water temperature) and the load profile1 representing the consumer hot water demand.

During the system simulation the performance of the chosen SWH system is computed

on an hourly basis over the period of one calendar year.

2.2.3 Solar Billing – True-Up Statement

As a customer of PGE, one of the major Investor Owned Utilities (IOU) in California [22]

you are entitled to feed back over-produced solar electricity, which has been generated

by a Photovoltaic (PV) system on your property, back to the electric grid. In the annual

True-Up statement the consumed electricity is compared against the generated electricity

and the customer only has to pay the difference. In the case more electricity has been

1The exact hourly amount of drawn hot water depending on the household size is derived using a

model developed by the project team at LBNL [1].

8

produced than consumed, i.e. more has been fed into than pulled from the utility grid, the

customer is compensated for this amount as part of the Net Surplus Compensation (NSC)

program. However, the compensation rate per kilowatt-hour is only between 2 and 4

cents, which is determined by the California Public Utilities Commission [23]. Compared

to the rate in the range of about 13 to 23 cents, customers have to pay per kilowatt-hour

(depending on their total annual electricity usage) [24], it is hardly economic to install

a PV system which is over-sized with respect to the household’s consumption. If the

amount of generated electricity stays below the consumed, the customer receives about

the same value per kilowatt-hour he would have had to pay for, if pulled from the grid [25],

which is much higher than the rate for over-produced electricity. In addition to this, no

matter if the customer generates or produces more electricity, monthly minimum delivery

charges will have to be paid for being connected to the grid (they will be credited on the

annual bill) [26].

In order to benefit from receiving an annual True-Up statement, customers of PGE have

to be admitted for the Standard Net Energy Metering (NEM) Interconnection Agreement,

which ensures a ”safe and reliable interconnection to the grid” [27]. If admitted, a NEM

device is installed. This device basically is an electric power meter which is able to

spin backwards. That way the amount of generated electricity fed back into the grid is

subtracted from the consumed energy and the total net energy amount can be derived.

9

3 Solar Electric System Implementation

This chapter describes the implementation work representing additional research adjacent

to the SWH project conducted at LBNL [1]. Specifically, details about the implementation

of the component models as part of the Solar Electric System as well as the system-level

implementation of the system itself are being explained.

3.1 System Overview

Figure 3.1 shows the system-level structure of the solar electric system. The blue-shaded

elements have been implemented in the scope of this thesis and will be further described

in the following sections.

 Heat Pump Tank

Hot Water
Storage Tank

Cold Water

Hot Water

AC
Heat Pump

Auxiliary
Electric

Resistance
Heater

DC: Direct current
AC: Alternating current

DC

Photovoltaic
Panel

Heat Coils

Grid

Inverter

Net Energy
Meter

Figure 3.1: Solar electric system structure

The typical operation of the system looks like this: During the day, solar irradiation is

absorbed by the photovoltaic panel resulting in the generation of electric energy in the

10

form of Direct Current (DC). To further use this energy it is inverted to Alternating

Current (AC) by an inverter. Now it can be used to power typical household appliances

like refrigerators or washing machines. Since there might be situations, where the amount

of electric power consumption is smaller than the generated, the surplus can be fed into

the power supply grid using a NEM device (see Section 2.2.3).

Until here, the system has transferred the energy coming from solar irradiation into electric

energy, thus the name Solar Electric System. To heat up the water with electricity as

efficiently as possible, a HPWH is used. Heat pumps make use of the same principle as

refrigerators, but only in the other direction (see Section 3.2.3).

In order to be able to meet peak demands, an auxiliary electric resistance heater is used.

This can be either placed in the tank to heat up the stored hot water or deployed as

an instantaneous (or through flow) heater before the warm water outlet. However the

goal is to minimize the usage of the auxiliary heater to a minimum, due to its significant

lower efficiency compared to the heat pump. Usually, HPWHs are provided as a system

including a hot water storage tank and a backup electric resistance heater [28].

3.2 Component Models

In the literature, many different models to simulate the performance of the following

component models are available, ranging from a high level of detail to more generalized

models. Since the focus of this project rather lies on the system-level simulation and the

fast exploration of the performance of different system configurations than on highly pre-

cise component-level simulation, the models chosen for the used components only capture

as much detail as necessary.

11

3.2.1 Photovoltaic

To calculate the electric power output of a PV module for a given solar irradiation, the

model PVSimple [29] published in the open-source Modelica Buildings Library [30] has

been chosen.

Since the performance parameters of PV modules can be given in a different format ei-

ther as a combination of the effective panel area Apannel, eff and the PV module conversion

efficiency ηpv or as peak performance Ppv, peak for a given reference irradiation Iref , Equa-

tion 3.2 has been derived from Equation 3.1 by using the relation seen in Equation 3.3

[19, p.35].

Ppv, ac = Apanel, eff · ηpv · I · ηdc, ac (3.1)

Ppv, ac =
Ppv, peak

Iref
· I · ηdc, ac (3.2)

Apanel, eff · ηpv =
Ppv, peak

Iref
(3.3)

Multiplying either of the mentioned pair of performance parameters with the current total

solar irradiation I (the sum of direct and diffuse irradiation, assumed to be perpendicular

to the panel surface) and the conversion efficiency of the inverter ηdc, ac results in the

electrical power generated by the PV after inversion Ppv, ac.

To validate the accuracy of this model, the results are compared to the PVWatts model

[31] which is part of a software tool called System Advisor Model (SAM) published by

the National Renewable Energy Laboratory (NREL) [32]. SAM is a software tool, to run

performance and cost simulations on a collection of renewable energy systems.

First the SAM PVWatts model is configured as shown in Table 3.1. To accommodate

for different household sizes, the validation is conducted for a PV panel with a rated

peak power of 1 kW in case (1) and 4 kW in case (2) (rated at a reference irradiation

of 1000 W
m2). Figure A.1 in Appendix A shows a screenshot of the system design view of

SAM with all parameters of the PVWatts model.

12

The solar irradiation is retrieved from NREL’s climate data set Typical Meteorological

Year (TMY3) with San Francisco International Airport as location.

Table 3.1: SAM PVWatts parameters

Parameter (1) (2)

System nameplate size 1 kW 4 kW

Module type standard

DC to AC ratio 1.2

Inverter efficiency 96 %

Total system losses 14.08 %

Table 3.2: SWH PVSimple parameters

Parameter (1) (2)

Ppv, peak 1 kW 4 kW

Iref 1000 W
m2

Apanel, eff 6.67 m2 26.67 m2

ηpv 15 %

ηdc, ac 82.48 %

Then, after having set up the PVWatts model, the simulation can be invoked starting on

January 1 at 00:00 and ending at December 31 at 23:00 of the same year with a resolution

of 1 hour. After that, the required results are exported to a CSV file which includes an

hourly time stamp, the solar beam irradiation in W
m2 and the resulting output power of

the PVWatts model in kW for every hour of the whole time period.

Now the performance parameters of the PVSimple model need to be set up according to

the parameters of the SAM PVWatts model. The system nameplate size is equivalent

to Ppv, peak defined under Standard Test Conditions (STC) which include a reference ir-

radiation of 1000 W
m2 . The SAM desktop software offers a help system which provides a

detailed documentation of all model parameters, including a description of the different

module types for the PVWatts model. For the standard type a panel efficiency of 15 %

can be found there. When using the relation shown in Equation 3.3 the effective panel

area Apanel, eff can be calculated for both cases (1) and (2). When consulting the SAM

documentation the recommended size for the inverter efficiency is 96 % and the total

system losses are 14.08 %. A detailed composition of these system losses can be seen in

Figure A.1 in Appendix A. To incorporate the same system losses for both models, the

inverter efficiency of the PVSimple model is defined in a way to include both inverter

efficiency and total system losses (see Equation 3.4).

ηac, dc = 0.96 · (1.0− 0.1408) = 0.8248 (3.4)

13

After running the simulation of the PVSimple model with the given performance param-

eters and the solar irradiation data imported from the simulation results of the SAM

PVWatts model, the generated power of both models can be compared. In Figure 3.2 two

duration curves are shown and Figure 3.3 visualizes the direct correlation of both models.

Figure 3.2: Duration curves for case (1) [1] Figure 3.3: Direct correlation for case (1) [1]

The relative error over the cumulative annual sum for both cases is 6.6 %, which is well in

an acceptable range, considering the simple design of the PVSimple model and the project

precision requirements. To optimize this even further, the value of ηac, dc is adjusted to

85 % which yields in a relative error below 4 %.

In order to choose which combination of performance parameters (either Apanel, eff and

ηpv or Ppv, peak and Iref) is used for the simulation, the Python function of the PV model is

being passed a boolean flag called use_p_peak as input argument. The function returns

both the generated power before and after the DC/AC conversion Ppv, ac and Ppv, dc. This

way, potential DC-powered components can be added to the system and be powered by

the PV panel as well.

3.2.2 Inverter

Implementing the inverter as separate component has mainly the reason to stick to a

consistent modular system architecture style. Its only performance parameter is the

conversion efficiency ηdc, ac which is being defined to incorporate all system losses related

to conversion (e.g. cable losses). Equation 3.5 shows the relation between AC and DC

power generated by the PV model.

Ppv, ac = Ppv, dc · ηdc, ac (3.5)

14

3.2.3 Heat Pump

Heat pumps have been around since the first refrigerators hit the market, since they are

based on the same working principle. Instead of generating heat, they move it from a

warmer space to a cooler and thus are able to operate with efficiencies well above 200 %,

also called Coefficient of Performance (COP). Figure 3.4 shows the basic cycle of a heat

pump. The evaporator (3) acts as a heat exchanger between the refrigerant and the

surrounding air. When entering it, the refrigerant is a low-pressured liquid. As its boiling

point is below the temperature of the surrounding air, it evaporates thereby absorbing

thermal energy. Then it enters the electrical powered compressor (4) as low-pressured

gas. Through the compression process the temperature of the gas rises and it now enters

the condenser (1) which respectively acts as a heat exchanger between the refrigerant and

the water (or air) which is to be heated. Since the temperature here is lower than the

boiling point of the refrigerant, it condenses and releases the stored thermal energy. As

cooled, high-pressured liquid it reaches the expansion valve (2) where it passes through

as low-pressured liquid and the cycle starts over [33].

Figure 3.4: Heat pump working principle [34]

For the implementation of the heat pump model used in this project an empirical model

presented in [28] has been used. In this report researchers of NREL have evaluated the

performance of five HPWH units under different conditions in a laboratory environment.

The measured performance data has been used to develop a simulation model using bi-

quadratic curve fits. Equation 3.6 shows the calculation of the performance factor fhp, perf ,

for a given wet bulb temperature Twb and average tank water temperature Twa.

fhp, perf = C1 + C2 · Twb + C3 · Twb
2 + C4 · Twa + C5 · Twa

2 + C6 · Twa (3.6)

15

Both temperature values have to be provided in Celsius in order for the equation to

work correctly. The coefficients C1 through C6 are provided in [28] and can be found in

Appendix B for either a given rated heating capacity Qhp, rated or rated COP COPhp, rated.

In order to calculate the effective heating capacity Qhp or effective COP COPhp of the heat

pump, first the performance factor using the respective coefficients (either from Table B.1

or B.2) has to be calculated and then multiplied with the rated performance Qhp, rated or

COPhp, rated (retrieved from Table B.3) respectively (see Equation 3.7 and 3.8) [28].

Qhp = fhp, perf,Q ·Qhp, rated (3.7)

COPhp = fhp, perf,COP · COPhp, rated (3.8)

After having done so, the electric power consumed by the heat pump Php can be derived,

using the relation shown in Equation 3.9 [35]. These calculations are necessary, since

the heat pump’s performance is strongly dependent on the current wet bulb ambient air

temperature and the average tank water temperature and both of these temperatures

change continuously through the course of operation.

Php =
Qhp

COPhp

(3.9)

In order to validate the implemented model of the heat pump, its performance over a

given range has been plotted as can be seen in Figure 3.5. In this plot the resulting

COPhp for Unit A (see Appendix B) has been computed according to Equation 3.6 and

3.8 for different tank and wet bulb temperature values. In the plot, the average tank water

temperature Twa is denoted as ”T_tank” and the wet bulb temperature Twb as ”T_wb”.

It can be seen, that the resulting COP is highest, for a low tank temperature and a

high wet bulb temperature. Specifically it exceeds 6 for Twa = 20 ◦C and Twb = 35 ◦C

and drops to 1 for Twa = 70 ◦C and Twb = 0 ◦C. However, these two edge cases are

not representative, since they don’t reflect the normal use-case of the heat pump, when

deployed for water heating. Assuming that the tank temperature is kept at around 60 ◦C,

the COP is ranging between 1.7 and 2.0 for a wet bulb temperature between 10 and 20 ◦C,

which can be considered as a typical use-case.

16

When comparing the performance results plotted in Figure 3.5 with the empirical test

results Equation 3.6 is based on (see [28, p.16]), a very high correlation can be noted,

which validates the correct functionality of the implemented heat pump model.

Figure 3.5: Heat pump performance validation

In the scope of the SWH project, two weather data sources can be used, either the TMY3

dataset [36] or one provided by the CEC [37]. Since the heat pump model requires the

wet bulb temperature as input parameter and the TMY3 dataset only contains the dry

bulb temperature, an approximation provided by [38] has been used to calculate the wet

bulb temperature, when using the TMY3 dataset as weather source. The author of [38]

is presenting an equation to calculate the wet bulb temperature Twb only depending on

the dry bulb ambient air temperature T and the relative air humidity RH1 (see Equa-

tion 3.10). The resulting error in the calculated wet bulb temperature stays below ±1 ◦C

for a valid range of 5 % to 99 % for RH and −20 ◦C to 50 ◦C for T at standard sea level

pressure of 101.325 kPa [38].

Twb = T · arctan(0.151977 · (RH + 8.313659)1/2)

+ arctan(T +RH)− atan(RH − 1.676331)

+ 0.00391838 ·RH3/2 · arctan(0.023101 ·RH)− 4.686035

(3.10)

1The value for the relative air humidity has to be provided as number between 0 and 100, e.g. 61.45%

as 61.45

17

3.2.4 Electric Resistance Heater

Electric resistance heaters (regardless if heating water or air) operate with an efficiency

of 100%. That means all the consumed electric power is converted into thermal energy.

But, since the used electricity is usually generated using coal, oil or gas generators which

have an efficiency of about 30% and there are also losses for transporting the electricity to

the consumer, the overall efficiency is much lower than the initial, promising 100% [39].

In the scope of this project the electric resistance heater is merely used as a backup heater,

in case the main heating system is not capable of meeting an occurring peak demand.

Its performance parameters are the nominal heating capacity Qel, nom and the efficiency

ηel. The efficiency parameter is mainly implemented as a formality, since as stated before

the efficiency is always 100%. However, if any other system losses would have to be

taken into account, this parameter could be adjusted respectively. In Equation 3.11 the

calculation of the consumed electricity Pel depending on a given nominal heating capacity

and conversion efficiency is shown.

Pel =
Qel, nom

ηel
(3.11)

The model is implemented in a way, that it is given the current heating demand as input

argument and depending on its nominal heating capacity returns the delivered heating

capacity, the unmet heating capacity and the used electric power. In the scope of this

project, this model can be used both for an in-tank backup heater as well as for an

instantaneous through flow heater.

18

3.2.5 Heat Pump Tank

The heat pump tank is divided into three separate functional components, the heat pump

as primary heat source, the electric resistance heater as backup heat source and the hot

water storage tank. Both the heat pump and the electric resistance heater have been

modeled in the scope of this project (see the proceeding sections). The model of the

hot water tank has been implemented by the team at LBNL and has been used for

implementing the heat pump tank component [1].

In the tank model basically the current, accumulated heat loss and gain are used to

calculate the resulting tank water temperature for the next time step of the simulation.

As heat loss the thermal losses of the upper and the lower tank volume are considered

as well as the thermal losses of the hot water piping and the loss resulting from taping a

defined volume of hot water. The heat gain is provided by the heat pump and the electric

resistance heater and can be zero in the case, that the water temperature reaches the

defined maximum of the tank. However, this control is implemented on system-level (see

Section 3.3) and not in the tank model.

As soon as both total heat loss and gain are defined, they are used to compute the thermal

dynamics using a model of the tank implemented by the team at LBNL [1] which returns

the new state of the tank.

3.3 Solar Electric System Model

In contrast to the component models the solar electric system model is not simulated

for a single time step (by default one hour), but for a whole calendar year. The climate

data is provided, as mentioned earlier, either by the TMY3 dataset [36] or by a dataset

of the CEC [37], whereas the hot water load profiles are based on research conducted at

LBNL [1].

In the implementation of the solar electric system model, first the component models are

initialized with their performance parameters, then the climate data and the load profile

is used to iteratively calculate the state of the system for each time step. In order to

19

control the status of the heat pump, the control scheme visualized in Figure 3.6 has been

implemented.

Ttank

Heat Pump
Status

On

Off

Tlimit

dthyst

Figure 3.6: Heat pump control cycle

As soon as the tank temperature Ttank reaches the defined maximum temperature Tlimit,

the heat pump is switched off, which results in a heat gain delivered to the heat pump

tank of zero. While the tank water is cooling off, due to unavoidable heat loss, the heat

pump stays off until the water temperature falls below the threshold Tlimit − dthyst. This

way it is ensured, that the dumped heat is minimized and the heat pump is not switched

on and off unnecessarily often. In the scope of this project, dthyst has been set to 5◦C.

After the time series representing the state development have been computed, the ar-

ray holding the unmet heating capacity is fed into the electric resistance model as heat

demand. The electric resistance heater model returns its electricity usage, its delivered

heating capacity and the unmet heating capacity. If the nominal heating capacity of the

electric resistance heater is not sufficient in order to fulfill its given demand, there remains

an unmet heating capacity, which is stored as system-level unmet heating capacity.

The time series hold values either representing heating capacity, generated electric power,

and consumed electric power (in Watt) or temperature (in Kelvin). For the computation

of the annual totals, values with the unit Watt are summed up which results in annual

totals with the unit Watt-hour and the temperature values are combined respectively as

an average temperature over the whole simulation period.

20

Since the PV panel may generate electricity when none or less is consumed by the house-

hold, there may remain a surplus of electricity which can be fed back into the grid. From

the perspective of the grid, the amount fed back into it is the difference between gener-

ated and consumed electricity, but in order to calculate a representive solar fraction of

the solar electric system, it is essential how the electricity is used. Figure 3.7 shows the

logic according to which the generated electricity is allocated to each heat source of the

solar electric system and how the remaining surplus is compiled.

Electric
Power

Time

HP

PV

HP

Aux

PV to HP PV to Aux Surplus

Figure 3.7: Electricity generation, usage and surplus

The red graph in Figure 3.7 labeled ”PV ” represents the electricity generated by the PV

panel. The purple graph labeled ”HP” shows the electricity usage of the heat pump and

the blue graph labeled ”Aux” that of the auxiliary electric resistance heater. Due to its

high efficiency the heat pump shall be used as primary heat source. Thus the available

solar electricity is initially used to power the heat pump. The yellow shaded segments

indicate how much PV generated electricity is used to power the heat pump. If the

heat pump consumes more than provided by the PV panel, the remaining amount has

to be pulled from the grid. If it is vice versa, there remains a surplus (indicated by the

green shaded segments) which can either be fed back into the grid or used to power the

auxiliary electric resistance heater (or other electric appliances in the household). For

the solar electric system the surplus is only used to power the electric resistance heater.

The amount of electricity to power it coming from the PV panel is represented by the

turquoise shaded segments in Figure 3.7.

21

In order to compute the total annual solar fraction of the solar electric system, first the

relative amount of PV generated electricity used to power each the heat pump and the

electric resistance heater are calculated. This is done by dividing Ppv, hp, total representing

the total electricity generated by the PV panel used to power the heat pump by the

heat pump’s total electricity usage Php, total (see Equation 3.12 and Equation 3.13 for the

electric resistance heater respectively).

fractionpv, hp =
Ppv, hp, total

Php, total

(3.12) fractionpv, el =
Ppv, el, total

Pel, total

(3.13)

The total solar fraction fractionsolar is representing the relative amount of delivered heat

capacity which has been generated by utilizing solar irradiation. To calculate it, the total

delivered heat capacity generated by a solar driven heat source is divided by the total

heat demand Qdem, total (see Equation 3.14). The total delivered heat capacity is the sum

of Qhp, total · fractionpv, hp which represents the total heat capacity generated by the heat

pump while being powered by the PV panel and Qel, total · fractionpv, el for the electric

resistance heater respectively.

fractionsolar =
Qhp, total · fractionpv, hp +Qel, total · fractionpv, el

Qdem, total

(3.14)

22

4 Web Framework Implementation

In this chapter the Django-based web framework is described in greater detail. This

includes the high-level project architecture, an in-depth outline of its sub-parts as well as

the set-up and usage of the framework.

4.1 Project Structure

The project has been developed using Django’s application-based architecture (see Fig-

ure 2.1 on page 6), meaning that all application-specific files are located in the applica-

tion’s folder. By doing so, the potential reuse for other Django projects is ensured. The

source code has two folders in its root directory. The doc folder contains any project

related documents, e.g. the file django-cheatsheet.txt, which explains the most com-

mon Django commands. The web folder contains the Django project itself. In Figure 4.1

the project directory structure inside the web folder is shown. This follows the standard

Django project structure. The name of the project root directory folder web is not rele-

vant to Django, it can be named arbitrarily. The web folder contains the project database

db.sqlite3, the file manage.py which is a Django command line utility and five fold-

ers called data, static, swhweb, system, and templates. In the following the purpose

and contents of these folders are explained in more detail in order to provide a thorough

understanding of the code structure of this project. Folders and files which don’t have

relevance for this project (e.g. __pycache__ or __init__.py) have not been included in

the project directory structure shown in Figure 4.1.

In the folder data external databases and pickled files containing simulation results are

stored. They are not included in the application folder, since in future use-cases they

might be stored on a different drive in the local network or even an external server.

23

The folder static is not tracked by the Version Control System (VCS) git and contains all

static content of the website (e.g. images and Cascading Style Sheets (CSS) or JavaScript

libraries). By running the command

$ python manage.py collectstatic

all static files stored in application-level folders are collected by Django and copied to the

static root folder. These folders have to be set in the file swhweb/settings.py, which

is explained later in this section. The reason for keeping all static files in this folder is,

that by doing so, it is possible to reference them uniquely from every page of the website

by using the relative path static/.

web
data.......................................Pickled files and external databases
static...................................Local static files (not tracked by git)
swhweb..Project-level files

static...............................Project-level static files (e.g. css or js)
css
icon
js

local_settings.py Local settings (not tracked by git)
settings.pyProject setting parameters
urls.py..Project-level URLs
views.py ...Project-level views

system..Application-level files
migrations.........................Status of model changes in the database
static...Application-level static files

js
templates......................................Application-level templates

system
component..............................Component related templates

list.html
detail.html
edit.html

configurationConfiguration related templates
home.html

visualization........................Visualization related templates
home.html

admin.py
functions.py...........Helper functions and reference to SWH project code
models.py.........................Model implementation of the application
urls.py..Application-level URLs
views.py ...Application-level views

templates...Project-level templates
home.html

db.sqlite3..Project database
manage.py..Django command line utility

Figure 4.1: Project directory structure

24

The swhweb folder holds all project-level configuration files and has been created after

running the following command to create the Django project:

$ django-admin startproject swhweb

Furthermore, it contains another static folder. Here, all front-end related files are stored

in. These are grouped into the folders css for CSS libraries, icon with the Favicon (the

small symbol appearing in a browser’s tab when opening a website), and js for JavaScript

libraries used for the project website. In the scope of this project the open-source front-end

component library Bootstrap [40] has been used. In order to do so the libraries

• bootstrap.min.css

• jquery-3.3.1.slim.min.js

• popper.min.js

• bootstrap.min.js

have to be made available in the respective HTML file. Figure C.1 and C.2 in Appendix C

show how to do this either by importing them directly from a Content Delivery Network

(CDN), which requires a connection to the Internet during usage, or by importing them

locally. For this project, the local import scheme has been chosen, in order to enable a

proper functioning website, even for an offline use-case. Therefore, the URLs provided in

the CDNs of the libraries have been opened in a browser, and the raw file content has

been copied to a local file respectively for every library.

The file swhweb/settings.py contains important project configuration parameters, just

to name a few of these [41]:

SECRET_KEY: Used for cryptographic signing, which among other use-cases is used for

setting and reading signed cookies [42].

INSTALLED_APPS: A list of Django applications used in the Django project. Besides the

application built in the scope of this thesis, this list contains applications included

in the Django core framework (e.g. admin for using Django’s administration site).

DEBUG: If this is set to True, detailed error messages are also displayed in the browser

(e.g. a broken URL), which helps for debugging. This should be set to False if the

project is in production (i.e. available to the end-user)

25

DATABASES: A Python dictionary containing the settings for the used database backend.

For this project a SQLite database is used.

STATIC_ROOT: This parameter holds the path to the Django project’s root static folder.

STATIC_FILES_DIRS: A Python list containing all paths to the static folders, both

project-level and application-level. From these paths the Django collectstatic

command will look for static files to be copied to the root static folder.

In order to exclude the value of SECRET_KEY from being stored on the remote project

source code repository, the file local_settings.py has been created and excluded from

being tracked by the VCS git. It is imported at the end of settings.py and overwrites

settings parameters only on this local machine. In case no file named local_settings.py

is found, the fall-back values in settings.py are used.

The file urls.py can be seen as a list of contents of the website. It routes the entered

URLs to the responsible views. In the project-level urls.py (stored in the swhweb folder)

there are only three entries in the Python list urlpatterns (see Figure 4.2).

1 from django.contrib import admin
2 from django.urls import path , include
3 from . import views
4
5 urlpatterns = [
6 path(’admin/’, admin.site.urls),
7 path(’’, views.home , name=’home’),
8 path(’system/’, include(’system.urls’)),
9]

Figure 4.2: Code excerpt from swhweb/urls.py

During development, the web page is available through http://localhost:8000 1 (only

on the local machine). If this root URL is entered in the address bar of a browser without

appending any path like in line 7 of Figure 4.2, the project-level view home is called, which

will render the project homepage template (see Figure 4.3). The involved view function

is stored in views.py in the folder swhweb and the template holding the HTML code for

the project-level homepage is stored in home.html in the folder templates.

1When running Windows, the path http://127.0.0.1:8000 has to be used.

26

Figure 4.3: Landing page of the web framework

The other two paths shown in Figure 4.2 do either direct to the administration site

provided by the Django core framework, by appending the path admin to the root URL

like this http://localhost:8000/admin , or point towards the application-level urls.py

file, located in the application folder system.

The project front-end makes use of the Bootstrap component Navbar, which is consistently

shown at the top of the page independently what tab the user is navigating to. It contains

a link called ”Home” to the home page on the far left and a link ”Admin” to the Django

administration site on the far right. In between the links ”Configurations”, ”Components”,

and ”Visualization” direct to the three application-level pages, explained in Section 4.3.

In the scope of this project the implemented Django application has been named ”system”.

Respectively, the system folder contains all files relevant for the application. The folder

migrations holds automatically created Python files, which Django uses to propagate

changes on the models, like the creation of entire models or just renaming a model field,

to the project database. See Section 4.3 how to trigger Django to create these Python

files and how to write the model changes to the database.

27

As already mentioned the static folder contains application-level static content of the

website. For the application of this project these are JavaScript libraries and a custom

JavaScript function used for visualizing the results (see Section 4.3.5 for more details).

In the system/templates folder the application-level Django templates can be found

organized in respective folders each for the model they belong to. This way, different

models can have a template with the same name (e.g. home.html).

In order to make a model accessible in Django’s administration site, it has to be included

in the file admin.py like shown in Figure 4.4. The admin site provides a powerful tool, it

enables authorized users to view, create, delete models and edit their fields. In Appendix D

screenshots of the admin homepage, the users configuration page and the model admin

pages are illustrated.

1 from django.contrib import admin
2
3 # Import the model class
4 from .models import Component , Configuration , Climate , Household
5
6 # Register the model classes for the admin page.
7 admin.site.register(Component)
8 admin.site.register(Configuration)
9 admin.site.register(Climate)

10 admin.site.register(Household)

Figure 4.4: Code excerpt from system/admin.py

Besides application-level helper functions, the file functions.py contains settings related

to the SWH project. In Section 4.2 its contents are described in further detail.

The files models.py, urls.py, and views.py contain the Django model implementations,

their mapping between URLs and view functions and the implementation of the view

functions. All of that is discussed further in the respective subsection in Section 4.3

28

4.2 Integration of SWH code

In order to keep the code used to build this project’s Django application separated from

content which is specific to the SWH project source code, the file functions.py has

been created. In here all necessary imports from the SWH project as well as additional

helper functions can be found. Besides this, a Python class called Map has been created

in functions.py in order to be used when referring to SWH project source code spe-

cific content and classes from within the Django application. In Figure 4.5 the member

variables of the Map class are shown.

1 class Map:
2 def __init__(self , components=COMPONENTS , systems=SYSTEMS ,

consumer_labels=CONSUMER_LABELS , system_labels=SYSTEM_LABELS):
3 self.components = components
4 self.systems = systems
5 self._c = consumer_labels
6 self._s = system_labels

Figure 4.5: Code excerpt from system/functions.py (Map class member variables)

It can be seen, that the __init__ function has four default arguments. These are defined

just above the Map class. The constant COMPONENTS has the type of a Python dictionary,

with each key representing the component class and each value, being a Python dictionary

itself, containing the class implementation and a list of supported component types. The

SYSTEMS constant has a similar structure. It also is a Python dictionary with each key

representing the system type and each value containing the system class implementation,

a list of required components and a list of required backup components. In Figure 4.6

both constants can be seen, holding the values not only for the Solar Electric System but

also for one variant of the Solar Thermal System.

The constants CONSUMER_LABELS and SYSTEM_LABELS are dictionaries imported from the

SWH source code containing a mapping between identifiers and human readable names.

At the current state of this project, they are only used to provide human readable names

of the components, since these are only stored as identifiers, both in COMPONENTS and

SYSTEMS.

29

1 # Import swh_sys classes
2 from swh.system.components import Converter , Storage , Distribution
3 from swh.system.models import System
4
5 # Edit this dictionary to add new components
6 COMPONENTS = {
7 ’converter ’ : { \
8 ’class ’ : Converter , \
9 ’types ’ : [’hp’, ’pv’, ’sol_col ’, ’el_res ’, ’gas_burn ’] \

10 },
11 ’storage ’ : { \
12 ’class ’ : Storage , \
13 ’types ’ : [’hp_tank ’, ’sol_tank ’] \
14 },
15 ’distribution ’ : { \
16 ’class ’ : Distribution , \
17 ’types ’ : [’inv’, ’dist_pump ’, ’sol_pump ’, ’piping ’] \
18 },
19 }
20
21 # Edit this dictionary to add new systems
22 SYSTEMS = {
23 ’solar_electric ’ : { \
24 ’class ’ : System , \
25 ’components ’ : [’hp’, ’pv’, ’hp_tank ’, ’inv’, ’piping ’], \
26 ’backup ’: [’el_res ’], \
27 },
28 ’solar_thermal_gas_backup ’ : { \
29 ’class ’ : System , \
30 ’components ’ : [’sol_col ’, ’sol_tank ’, ’sol_pump ’, ’piping ’], \
31 ’backup ’ : [’gas_burn ’], \
32 },
33 }

Figure 4.6: Code excerpt from system/functions.py (components and systems set-up)

Essentially, the purpose of the Map class is to provide the content of the COMPONENTS

and SYSTEMS constants in a suitable representation required in different parts of the web

framework. As an example, the Map class function get_component_choices is used to

return a Python list with each element being a list itself with the component class name

as first element and a list of pairs as second element. These pairs, represented again

as a Python list, contain the component identifier and a human readable name of every

component associated with the respective component class (see Figure 4.7).

This list is used for providing the choices argument for the Django model field type of

the Component model class like this:

type = models.CharField(max_length=255, choices=Map().get_component_choices())

30

By doing so, Django’s administration site of the Component model is offering a dropdown

menu for the type model field as shown in Figure 4.8. When comparing the dropdown

menu with the structure of the list shown in Figure 4.7, the same hierarchy can be noticed,

according to which each component class has its associated components. For the entries

of the dropdown menu, by default the second element of the most inner list is chosen.

This is the human readable name of each component retrieved from the label map of the

SWH project source code.

[[’converter’,
[[’hp’, ’heat pump’],

[’pv’, ’photovoltaic’],
[’sol_col’, ’solar collector’],
[’el_res’, ’electric resistance’],
[’gas_burn’, ’gas burner’]]

],
[’storage’,

[[’hp_tank’, ’heat pump tank’],
[’sol_tank’, ’solar storage tank’]]

],
[’distribution’,

[[’inv’, ’inverter’],
[’dist_pump’, ’distribution pump’],
[’sol_pump’, ’solar pump’],
[’piping’, ’piping’]]

]]

Figure 4.7: Output of Map class function

get_component_choices

Figure 4.8: Type choices for Component

model in Django admin page

The advantage of using the Map class functions as shown with the example of the function

get_component_choices earlier in this section, is that the contents of the constants

COMPONENTS and SYSTEMS are not stored in an instance of the Map class. Instead, every

time the class functions are called, the constants are used as the default arguments in the

__init__ function, so if a new component is added there, it will be reflected in real-time

in the web framework without having to restart the Django framework. This is ensured

by calling the Map class functions like this Map().<class_function()> , instead of like

this <Map_instance>.<class_function()> .

31

4.3 Models

As described in Section 2.1, Django uses an ORM to access and describe the database

through Python classes, in the Django scope referred to as models. In the scope of this

project, four models have been created (in the file system/models.py), which can be seen

in Figure 4.9.

Component Model
id : AutoField

name : CharField

type : CharField

description : TextField

parameters : TextField

size : FloatField

Configuration Model
id : AutoField

name : CharField

type : CharField

description : TextField

components : ManyToManyField

climate : ForeignKey

household : ForeignKey

Climate Model
id : AutoField

name : CharField

climate_zone: CharField

data_source: CharField

data: TextField

Household Model
id : AutoField

name : CharField

occupancy : CharField

at_home : BooleanField

data : TextField

Figure 4.9: Django models and their attributes

All of these models are Python classes inheriting from django.db.models.Model, which

gives them access to Django specific model fields. When using one of these fields, Django

knows to store this attribute in the database. By default every model has an id field,

which has the type AutoField, an automatically increasing Integer used as primary key

in the database table (which does not have to be explicitly set in the Python class). In

this project, every model has been given a name field of the type CharField to hold a

human readable name of the respective model instance. The purpose of the other fields

is explained in the following sections respectively for each model.

When running the following command in a terminal while being in the project’s root

directory (the web folder), Django checks if there are any changes to the models.

$ python manage.py makemigrations

If so, the changes are indicated in the terminal output and Django specifig Python files

are created in the folder system/migrations. These contain all changes to the database

and are executed when running the following command. This will result in the migration

of the changes to the database.

32

$ python manage.py migrate

Every time, a model or one of its attributes, which has the type of a Django model field,

is created, deleted, or renamed, these two commands have to be executed, in order to

migrate the changes to the Django project database.

Each model has its own manager class, which can be used to access, edit or delete model

instances in a user-defined way. In Figure 4.10 the manager class of the component

model can be seen (in lines 4 - 9). It inherits from django.db.models.Manager and

has a function create_component() which instantiates and returns a new object of the

Component class.

1 from django.db import models
2
3 # A manager class for the Component class
4 class ComponentManager(models.Manager):
5
6 # Create a new component object with given parameters
7 def create_component(self , name , type):
8 component = self.create(name=name , type=type)
9 return component

10
11 # Component class
12 class Component(models.Model):
13
14 # Name of the model
15 name = models.CharField(max_length =255, default=’undefined ’)
16
17 # Model manager class
18 objects = ComponentManager ()

Figure 4.10: Code excerpt from system/models.py

Lines 12 - 18 in Figure 4.10 show an excerpt of the Component class with its name field

and the reference to its model manager class. In order to create a new Component object

the following Python code can be used:

new_comp = Component.objects.create_component(name=’name’, type=’type’)

The above shown example of the Component class is equivalent for the other model classes

and just demonstrates the structure and usage.

33

4.3.1 Component

As shown in Table 2.1 on page 8, the SWH system components are grouped into three

classes which are Converter, Storage and Distribution. When navigating to the ”Com-

ponents” tab, the comp_list view is invoked which creates a list of all component types

of each component class with a human readable name for each type as set up in the Map

class in line 10 of Figure 4.11 and retrieves all Component objects stored in the database

in line 13. It then returns a HTTPResponse object containing the respective template (in

this example the file list.html) and the previously gathered dynamic data as Python

dictionary.

1 from django.shortcuts import render
2
3 from .models import Component
4 from .functions import Map
5
6 # Show the components home page
7 def comp_list(request):
8
9 # Get list of component types for each Component class

10 types = Map (). get_component_choices ()
11
12 # Retrieve a list of all Component objects from the DB
13 components = Component.objects.all()
14
15 # Return html page including some dynamic data
16 return render(request ,
17 ’system/components/list.html’,
18 {’components ’ : components , ’types ’ : types})

Figure 4.11: Code excerpt from system/views.py

Then, by using Django’s built-in template language it is possible to dynamically create

the actual HTML file which is rendered in the browser. In Figure 4.12 the usage of

the template language is shown conceptually for the list.html template building the

Components page. To use constructs like for loops or if statements, the construct is

enframed like this {% <construct> %} where <construct> has to be replaced with the

respective key word. To use a variable passed from the view function, the variable name

has to be enframed like this {{ <variable> }}, where <variable> represents the name

of the variable. The Django template language is a very powerful tool and also provides

features like filters, comments and template inheritance, just to name a few [43].

34

{% for class, values in types %}

> Create a card for the component class

> Populate title of card header using {{ class }}

> Create dropdown menu in card header using {{ values }}

> Populate card body with components of current component class

{% for component in components %}

> Check if current component belongs to current component class

by comparing {{ component.type }} with entries of {{ values }}

> If yes, create link for current component using {{ component.id }}

and {{ component.name }}

{% endfor %}

{% endfor %}

Figure 4.12: Conceptual usage of Django’s template language in

system/component/list.html

In the outer for loop the current component class (stored in the variable class) and its

associated list of components (stored in the variable values) is retrieved from the types

list (see Figure 4.7 on page 31) which has been forwarded from the list view. Then the

value of class is used as a title for the card header. The variable values contains the list

of components for the current component class and can be used to create the dropdown

menu, which only contains the components of the current component class. Then the

card body is populated with a list of components belonging to the current component

class by cycling through the components list. This list contains the actual Component

objects found in the database and is passed along by the comp_list view. That means

the template has access to the object fields id, type, and name. By comparing the type

field with each entry of values it can be checked if the current Component model object

belongs to the current component class. If so, the link is created by using the name field

as link text and the id field to create the HTML-native href attribute which points to

the target URL of the link.

35

So the Django template system translates this line

{{ component.name }}

to the following, for a given component with the type ”pv”, the name ”Photovoltaic Panel”

and the id 4, which can be shown, when selecting the function ”View Page Source” after

right-clicking on the rendered page in the browser. By using the url tag and the name

of the view function ’sys:comp_detail’, Django uses the structure defined in the file

system/urls.py to create the actual URL (see Table 4.1 on page 38).

Photovoltaic Panel

Figure 4.13 illustrates the resulting web page showing all components categorized in the

respective component class. When clicking on ”Create New” in the card header, as men-

tioned, a dropdown menu is shown, within only the components are available, which

belong to the respective component class.

Figure 4.13: Rendered list.html template

By clicking on the component name, the comp_detail view of the respective component

is called, by directing to the generated URL, like mentioned earlier. In the view, the

Component object is retrieved from the database by querying for its id in order to read

all the model attributes. These are then sent to the detail.html template, where the

details of the component are rendered as shown in Figure 4.14.

36

Figure 4.14: detail.html template Figure 4.15: edit.html template

The detail.html template provides two buttons at the bottom of the page Edit and

Delete. The Edit button calls the comp_edit view function which does nothing else than

retrieving the respective Component object from the database and forwarding it to to the

comp_edit template (shown in Figure 4.15). By clicking the Delete button, the current

component can be deleted after confirming it in an appearing pop-up. This invokes the

view function comp_delete which deletes the current Component object from the database

and redirects to the list.hml template.

In the edit.html template, the user can edit all model fields except the type. All form

fields need to contain a value, before clicking on Save, otherwise the page is refreshed

and a warning is displayed at the top of the page. One exception is if the user wants

to delete a parameter. To do so, the Key field has to be left empty and after clicking

on Save the parameter will be deleted. The Save button creates a HTTP POST request

containing the values of the form fields and calls the comp_form template which processes

the new values and stores them in the database if they are valid before redirecting to the

detail.html page. If a value is invalid, the view renders the edit.html template and

displays the respective warning. A warning message is displayed either if a form field is

empty, contains only white spaces or if two or more parameter keys hold the same value.

37

For adding a new parameter, the user has to click the ”Add Parameter” action link, which

invokes the comp_add_par view function and refreshes the page, now with an additional

parameter listed. In the comp_add_par view, it is checked if the string ”param” does

already exist as parameter key, if yes ”param_1” (then ”param_2” and so on) is checked,

until it is not present any more. This way it is ensured that the user can add multiple

new parameters without having to change the value of the ”Key” field each time.

Table 4.1 shows an overview of all Component views, their relative URLs, and the template

they are directing to after they finished execution. What can be seen here, is that not all

views have their own template, which is due to the fact, that a view can not only be used

to render a new template, but also for data processing while staying on the same page.

Table 4.1: Component views-to-URL mapping

View URL Target template

comp_list component/ list.html

comp_detail component/<component_id>/ detail.html

comp_edit component/<component_id>/edit/ edit.html

comp_form component/<component_id>/form/ detail.html

comp_add_par component/<component_id>/add_par/ edit.html

comp_create component/<component_type>/create/ list.html

comp_delete component/<component_id>/delete/ list.html

4.3.2 Climate

For the SWH project two climate data sources can be used, the TMY3 dataset [36] and

a dataset provided by the CEC [37]. Both can be found in a SQLite database stored in a

single file2 in the folder data. The datasets have been preprocessed by the team at LBNL

in order to ensure compatibility in terms of scientific units and valid numerical values. As

mentioned in the end of Section 3.2.3, the TMY3 dataset initially does not contain the

wet bulb temperature and thus these values are approximated based on the work of [38]

and appended to the dataset. Additionally as part of the preprocessing, the main water

temperature has been added to the datasets.

2This file has been created by the team at LBNL [1].

38

Table 4.2 shows all the climate zones available in California as provided by the two

mentioned datasets. The CEC enumerator is just an arbitrary number in which order the

climate zones are stored in the database. The TMY3 code is the identifier of the climate

zone as defined by NREL.

Table 4.2: Available climate zones in California

Location CEC enumerator TMY3 code

Arcata, CA 01 725945

Santa Rosa, CA 02 724957

Oakland, CA 03 724930

San Jose, CA 04 724945

Santa Maria, CA 05 723940

Torrance, CA 06 722970

San Diego, CA 07 722900

Fullerton, CA 08 722976

Burbank, CA 09 722880

Riverside, CA 10 722869

Red Bluff, CA 11 725910

Sacramento, CA 12 724830

Fresno, CA 13 723890

Palmdale, CA 14 723820

Palm Springs, CA 15 722868

Blue Canyon, CA 16 725845

In order to enable the user to select a climate zone to be used for the system simulation,

a Climate model has been implemented as part of the web framework. This also ensures,

that the climate data is included in the Django project database. As the other models, the

Climate model also has an id and name field. Additionally, it has a climate_zone field

which either holds the CEC enumerator or the TMY3 code and the field data_source

indicating the used climate dataset. The field data holds the climate data associated with

the location as a string formated Python dictionary.

Since the typical use-case does not include any alterations of the climate data, but only

39

the selection which climate to use for the system simulation, the Climate model only

has one view function called climate_populate. As the name suggests, its purpose is

to populate Climate model objects in the Django project database by reading from the

SQLite database provided by the team at LBNL containing the two climate datasets.

4.3.3 Household

Similar to the Cimate model the sole purpose of the Household model is to hold data

which the user can select from for the system simulation. In the scope of the SWH project

a consumer load model has been developed by the team at LBNL, which takes the number

of occupants per household and a flag indicating if the occupants are at home during the

day as input. These input parameters are stored in the Householdmodel fields occupants

and at_home. The hourly hot water draw amount is stored in the field data as string

formatted Python list.

Like the Climate model, the Houshold model only has one view function which is called

household_populate. It reads the load profiles from the same database the climate data

is stored in and according to the provided number of occupants and at_home flag it creates

a Household model object3 which is stored in the Django project database. To configure

which different types of households are available to choose from in the web framework,

the constant HOUSEHOLDS has been created in the file system/functions.py, as shown in

Figure 4.16.

1 HOUSEHOLDS = { \
2 ’Single person household ’ : {’occupancy ’: 1, ’at_home ’: False},
3 ’Single person household (at home)’ : {’occupancy ’: 1, ’at_home ’: True},
4 ’Two person household ’ : {’occupancy ’: 2, ’at_home ’: False},
5 ’Two person household (at home)’ : {’occupancy ’: 2, ’at_home ’: True},
6 ’Three person household ’ : {’occupancy ’: 3, ’at_home ’: False},
7 ’Three person household (at home)’ : {’occupancy ’: 3, ’at_home ’: True},
8 ’Four person household ’ : {’occupancy ’: 4, ’at_home ’: False},
9 ’Four person household (at home)’ : {’occupancy ’: 4, ’at_home ’: True},

10 }

Figure 4.16: Code excerpt from system/functions.py (household types)

To add different household types, they have to be added to HOUSEHOLDS, before rerunning

the populate_households view function in the Configuration home.html template.

3The data field of this object is populated by using the load model developed by the team at LBNL [1].

40

4.3.4 Configuration

The Configuration model is used to describe a specific system configuration. The type

field indicates which type the system has. At the time of writing, two different system

types are supported: the Solar Electric System and the Solar Thermal System4 (with

a gas burner as backup heater). To add a new system type, the constants COMPONENTS

and SYSTEMS defined in the file system/functions.py need to be edited accordingly (see

Section 4.2).

Besides that, the Configuration model has three more fields to define the system, the

user wants to simulate: the components field, the climate field, and the household

field. The components field has the Django model field type ManyToManyField, which

defines the relation between objects of the Configuration model class and objects of the

Component model class. By using the relation provided by the ManyToManyField field,

multiple Component model objects can be associated with one or more Configuration

model objects. It has to be noted, that there is only a reference in the Configuration

model object and not in the Component model object, so the latter is not aware of any

association with a Configuration model object.

The fields climate and household are both of the Django model field type ForeignKey,

which represents a reference from one specific Configuration model object to one spe-

cific Climate or Household model object. In contrast to the relation to the Component

model, each Configuration model object ever only can be assigned a single climate

and household. By using ForeignKey instead of OneToOneField, it is ensured, that the

same Climate model object (or Household model object respectively) can be assigned to

multiple Configuration model objects.

In Figure 4.17 the home.html template of the Configuration model can be seen. When

clicking on the ”Configurations” tab in the navigation bar at the top of the web page, the

config_home view is called which loads all Configuration, Component, Climate, and

Household model objects from the project database and forwards them to the home.html

template.

4This system has been completely implemented by the team at LBNL [1].

41

Similar as seen in the Component list.html template, a card for each type is created,

where the card header shows the configuration type and an action link ”Create new” to

create a new Configuration model object of the respective type. In the card body all

Configuration model objects found in the database are visualized as a separate card,

shaded grey to be distinguishable from the surrounding card body. The card header

representing a Configuration model object shows its name and three action links: ”Sim-

ulate”, ”Edit”, and ”Delete”. When the user clicks on ”Simulate”, the associated system

configuration is simulated, which takes a few seconds, before the user is redirected to the

visualization template, where the simulation results are visualized. By clicking on ”Edit”

the name of the Configuration model object can be edited in an appearing pop-up form,

whereas the action link ”Delete” triggers the deletion of the current Configuration model

object, after confirming one more time.

Figure 4.17: Rendered configuration/home.html template

The card body of each Configurationmodel object shows a list of associated components,

the assigned climate and the assigned household. If these fields have not been assigned

yet, a respective warning is shown in red font. The action link ”Add” opens a dropdown

menu, which shows a list of all available components found in the project database,

when being clicked on. When an entry of the dropdown menu is clicked, the respective

42

component is added to the current configuration and can be removed by clicking on the

action link ”Remove” displayed next to its name. Every component can only be added

once to a specific configuration. As soon as a climate or household has been assigned

to a configuration, it can not be removed again, but only exchanged by another one by

clicking on the action link ”Set” and choosing from the appearing dropdown menu.

In the current version of this project’s source code, an action link each for populating

the Climate and Household model objects is shown at the top of the Configuration

page, if there are no Climate and Household model objects found in the database. If the

database has been populated, the action links are hidden in order to avoid unnecessary

duplicates, when running the populate functions multiple times.

Table 4.3 shows an overview of all view functions of the Configuration model, their

relative URL and the targeted template. In contrast to the Components model, the

Configuration model only uses one template, so all the view functions will render the

Configuration template home.html.

Table 4.3: Configuration views-to-URL mapping

View URL Target template

config_home configuration/ home.html

config_set_name configuration/<configuration_id>/set_name/ home.html

config_set_climate configuration/<configuration_id>/set_climate/<climate_id>/ home.html

config_set_household configuration/<configuration_id>/set_household/<household_id>/ home.html

config_add_component configuration/<configuration_id>/add_component/<component_id>/ home.html

config_remove_component configuration/<configuration_id>/remove_component/<component_id>/ home.html

config_create configuration/<configuration_type>/create/ home.html

config_delete configuration/<configuration_id>/delete/ home.html

config_invoke configuration/<configuration_id>/invoke/ home.html5

In order to invoke the system simulation, the Map class’s function get_system_class

is used to instantiate an object of the SWH System class with the given parameters

retrieved from the Configuration model object’s associated components, climate, and

household. After that the SWH System class’s function simulate is used to invoke the

system simulation. The results are stored in a local pickle file in order to be retrievable

from the Visualization model.

5If the simulation is successfully invoked in the view function config_invoke, the home.html template

of the Visualization model is being shown.

43

”Pickling” a Python object is the process of converting a binary object into a byte-

stream (also known as serializing) with the purpose of being able to store the object on

a file system. This mechanism is provided by the Python module pickle (available in

the Python Standard Library) and is specific to Python in order to be independent of

external serialization standards. The reverse process is called ”unpickling” [44].

For every Configurationmodel object a separate pickle file is stored in order to separate

the simulation results of each configured system. The name for the pickle file is built

like in the following scheme (represented as Python code)

file_name = ’results_’ + str(config.type) + ’_’ + str(config.id) + ’.p’

which would result in ”results_solar_electric_1.p” for a Configurationmodel object

of type solar_electric with the id being 1. This ensures, that for every Configuration

model object there can only exist a single results file, since every id field is unique.

4.3.5 Visualization

The Visualization model is technically spoken not a Django model like the previously

described models, since it does not have an own Django model class implementation in

system/models.py. This is due to the fact, that the visualization of the results is handled

in JavaScript except for a couple of Python helper functions and the Visualization tem-

plate defined in system/templates/visualization/home.html. And since the results

are stored as local files, there is no state to be captured by a Django model.

The view function first retrieves all Configuration model objects from the database in

order to be aware what results files to expect. For every file which is stored according to

the scheme explained in the proceeding section, an entry in a Python list called plots

is created. This entry is a Python dictionary formated as shown in Figure 4.18. The

name key is filled with the Configuration model object’s name field and the id key is

assigned the type and id field of the Configuration model object (concatenated as

string). The index key holds the index6 for the plot, which in the case of this project

is a list of timestamps, starting at January 1st at 12 AM and ending at December 31st

6The index represents the x-axis of the plot.

44

at 11:00 PM. The series key contains a dictionary with all time series returned from

the system simulation. It is created dynamically, so if a new series is added in the SWH

project source code, it will be reflected here without any intervention necessary. Its data

key contains the simulation data as list of all time steps and the name key is a human

readable name retrieved from the SWH label map, as provided through the Map class. For

simplicity reasons Figure 4.18 only holds time series with two example data values. The

last key called totals contains a dictionary holding all annual totals returned from the

system simulation.

plot_data = {
’name’: ’Solar Electric System’, \
’id’: ’solar_electric_1’, \
’index’ : ["2018-01-01 00:00:00", "2018-01-01 00:00:00"], \
’series’: {\

’Q_hp’ : {\
’data’: [0.0, 32.4], \
’name’: ’Heat Pump - Delivered’}, \

’Q_dem’ : {\
’data’: [0.0, 33.3], \
’name’: ’Heat Demand’}, \

}, \
’totals’: {\

’Sol_Fra’: {\
’name’: ’Solar Fraction’, \
’data’: 0.53}, \

’Q_hp’ : {\
’data’: 1324.42, \
’name’: ’Heat Pump - Delivered’}, \

}
}

Figure 4.18: Data structure holding plot data

In Figure 4.19 the rendered Visualization template is shown. The current version of the

web framework will display all available plots each in a card using the full width of the

browser window. The card header will show the name of the respective Configuration

model object on the left side and an action link to show the by default hidden totals in

a table on the right side. After clicking on ”Show/Hide Table” a collapsed table will be

45

expanded in between the card header and the card body which is showing the simulation

results as plotted time series.

In the scope of this project, the open-source project Plotly [45] has been used. Plotly

includes interactive graphing libraries both for Python [46] and Javascript [47]. For the

Visualization model the JavaScript library Plotly.js has been used. It is following a

declarative design guide, where charts are described as JSON objects [47].

Figure 4.19: Rendered visualization/home.html template

The main advantage of using the browser-based graphing library Plotly is that the user

can interactively manipulate the current view of the plotted graph. As can be seen in the

top right corner of the card holding the results graphs in Figure 4.19, Plotly provides a

tool-bar for the interaction with the graph view7. Among those provided tools are the

option to download the current view as an image, the user can select areas to zoom in

to and reset the zoom, it can be chosen to either show labels of all curves or only the

one closest to the cursor and there is an option to export the graphs to an online tool

called Plotly Chart Studio [48]. On the right side of the plot there is a list of available

data series with a color reference to the associated graph in the plot. With a single click

7This tool-bar is only shown, when the mouse cursor is moved above the top right corner of the plot.

46

on the name of a data series the associated graph will be hidden (or shown) in the plot,

whereas a double click hides (or shows) all other graphs. This feature is especially useful

to analyze a single or multiple selected data series.

Since the time series in this project have two different units Watt and Celsius, two y-axes

are used to show both data types simultaneously. In order to decide which data series is

assigned to which y-axis, the label of the data series is being checked. Only if it starts

with the string ”Temperature”, it is assigned the right y-axis and additionally its values

are converted from Kelvin to Celsius. Plotly enables the user to independently zoom in

on each y-axis, by scrolling in and out while keeping the cursor over the respective y-axis.

Additionally, the visible segment of an axis can be moved by dragging with the mouse on

the axis in one direction. On the top left corner of the plot several buttons can be seen.

By clicking on them, predefined time ranges are applied to the x-axis (e.g. the last 30,

7, 3 or 2 days). All these features are very useful to visualize a very specific part of the

simulation results, which is essential for the analysis of the simulated system.

The JavaScript code to create the plot using the Plotly.js library can be found in the

function plot_results in the file swh_plots.js in the application-level static folder of

the Django project. In the Visualization template home.html the function is called for

every available plot at the end of the file.

4.4 Set-Up

This section contains the instructions on how to get the implemented Django project

up and running. Generally, it is possible to deploy the project on every machine, which

is capable of running Python (since Django is implemented in and using Python) and

which has a JavaScript-enabled web browser. The following commands are to be ex-

ectued in a Unix terminal, and have only been tested on a computer running the Linux

operating system.

In order to ensure that the installation of the required Python packages don’t interfere

with a potential system-wide Python installation, the ”Python Data Science Distribution”

Anaconda is used [49]. Anaconda includes a Python package and environment manager,

47

supports both Python version 2 and 3 and is available for all major operating systems

(including Linux, Windows and macOS). Instructions on where to download and how to

install Anaconda can be found in the online documentation (see [50]). One advantage of

using Anaconda over alternative package and environment manager is that many useful

Python libaries like pandas or numpy are already included in the Anaconda installation.

After having installed Anaconda, a new environment can be created by using the following

command, where <env_name> should be replaced with the name of the new environment:

$ conda create -n <env_name>

After the new environment has been created, it can be activated or deactivated by running

one of the following commands, respectively. When the environment is activated, it

appears in parentheses in front of the terminal prompt (which usually contains the user

name and the name of the machine).

$ conda activate <env_name>
$ conda deactivate

After having activated the new environment, the installed packages can be shown by

running the command conda list . In addition to the package names and versions this

also prints the installation path of the environment, just for reference. Now the required

Django Python package needs to be installed by running the following command8:

$ conda install django

Besides the Django Python package this will install additional dependencies required

by Django. To now add the Python system model of the SWH project the following

command has to be exectued in the same directory as the root folder of the SWH source

code (<swh_root_folder> needs to be replaced with the actual folder name):

$ pip install -e <swh_root_folder>

pip is Python’s default package manager and provides an ”editable” installation option by

using the -e flag. This ensures, that the above created Python environment is referencing

8For this project, Django version 2.1.7 has been used.

48

the locally stored source code of the SWH project for the web framework. Since both

the web framework and the SWH system model are still in development, changes on both

code bases will be reflected when running the Django project.

After having installed all required dependencies, the installation can be tested by starting

the Django development server (on http://localhost:8000 or http://127.0.0.1:8000

on Windows machines) with the following command from the same directory as the file

manage.py is stored in:

$ python manage.py runserver

If this command is being executed without any errors, the installation was successful.

Only one warning will be displayed, when running the development server for the first

time. It states that there are unapplied migrations and also provides a list of them. The

reason for this is, that the installed applications listed in the file settings.py still need

to be migrated to the project database. This can be done, by running the following

command:

$ python manage.py migrate

In order to be able to access the Django administration site, a user with the required rights

has to be created. After running the following command and providing a user name, an

optional email address and a password, a super user (with admin rights) is created:

$ python manage.py createsuperuser

4.5 Usage

The detailed usage of the different parts of the front-end has already been described in

Section 4.3, so this section is intended to provide more details about the system-wide

usage and typical work-flow of the web framework.

After having done the set-up (as described in the previous section), the project database

does not contain any models. So initially the Component and Configuration model

49

objects have to be created and the Climate and Household model objects have to be

imported by running their respective populate functions.

The web framework has been designed in order to run system simulations with different

system configurations in order to analyze and compare the results. So either an existing

configuration can be simulated and analyzed before its components (or climate or house-

hold) are changed in order to simulate it again, or multiple system configurations (even

of the same system type) can be created and simulated. The latter approach has the

advantage that no simulation results are overwritten.

In order to add new component or configuration types to be available for system simu-

lations through the web framework, the constants COMPONTENTS and SYSTEMS in the file

system/functions.py have to be edited accordingly. This and the option to add differ-

ent houshold configurations (as described in Section 4.3.3) are the only two cases, where

the user would have to interact with anything outside of the web browser. But since this

not expected to be part of the typical usage of the web framework, it can be neglected in

terms of overall usability.

In order to deploy the web framework in production mode on a publicly available server,

so that it can be accessed not only from the local computer, but basically from every

device connected to the Internet with a JavaScript-enabled browser, there are several

options. One of them is to host a virtual private server offered by the cloud service

provider DigitalOcean [51]. Since the deployment is not part of this thesis, this detailed

description [52] is referenced and can be consulted in case needed.

50

5 Results and Outlook

In this chapter, simulation results of the Solar Electric System are being discussed, before

a comprehensive list of potential features, which should be considered for future work on

the web framework, is provided. Finally, the results of the work conducted in this thesis

is summarized and final conclusions are being presented.

5.1 Simulation Results of Solar Electric System

In the following the simulation results of the Solar Electric System for two different sys-

tem configurations are shown. The simulations have been conducted for a four person

household (not being at home during the day, i.e. at_home = False) and Oakland, CA

as climate zone. The differentiating parameter is the size of the PV panel Apanel, eff ,

resulting in two different values for its peak power Ppv, peak. The sizes have been chosen

as shown in case (1) and (2) in Table 3.2 on page 13 as 6.67 m2 (1) and 26.67 m2 (2)

for Apanel, eff , which respectively yields in 1.0 kW (1) and 4.0 kW (2) for Ppv, peak for the

given reference irradiation (Iref = 1000 W
m2) and panel efficiency (ηpv = 15 %). As HPWH

Unit D, as shown in Table B.3, has been chosen, which defines the parameters of the heat

pump, the heat pump tank, and the electric resistance heater component. In Table E.2

in Appendix E the detailed system configuration and the assigned parameters are shown.

As described in Section 4.3.5 on page 44ff, the simulation results consist of multiple time

series and their annual totals. In Table E.1 in Appendix E the full list of annual totals

and average temperature values is provided. In the following, a representative selection of

them is discussed further, before case (3) and (4) in Table E.1, which have been conducted

to analyze the effects of an adjusted heat pump control scheme, are being described.

For both cases (1) and (2) the annual net heat demand for a four person household is

4, 606.57 kWh which the system almost completely was able to provide except for an

unmet heat capacity of 0.32 kWh which can be neglected. This and the fact that there

only has been 23.98 kWh of backup heating capacity delivered by the electric resistance

51

heater throughout the year demonstrates, that with a rated heating capacity of 1.82 kW

the heat pump is more than sufficiently sized to supply a four person household.

The main differences for the two cases can be seen in the amount and usage of the

generated PV electricity. For case (1) the PV panel is generating 1, 612.76 kWh in one

year compared to four times as much with 6, 448.63 kWh for case (2). This correlates

with the ratio of panel areas for case (1) and (2), which also is 4. For both cases, the

heat pump is consuming 4, 002.98 kWh of electricity in a year, but with 1, 696.81 kWh

the system in case (2) has about 70 % more PV generated electricity to power the heat

pump than the system in case (1) with 1, 015.89 kWh. For the electric resistance heater

this effect is even more significant: In both cases the annual consumption for the electric

resistance heater is 23.98 kWh (which is rather low), but in case (2) around a quarter of

that (6.17 kWh) is being provided by the PV compared to 1.15 kWh as in case (1). All

this is resulting in a considerably distinguished total solar fraction for both cases. While

case (1) shows a solar fraction of 34.30 %, the increased panel area in case (2) is resulting

in a solar fraction of 57.30 %, which is almost twice as high as in case (1). Another

meaningful difference is the total annual surplus of electricity which is available to be

used for other appliances in the household or can be fed back into the grid, if a NEM has

been installed. The system as configured in case (1) yields 595.72 kWh of over-produced

electricity, while in case (2) almost eight times more (4, 745.65 kWh) electric power is

available for other uses.

Which of the cases is more suitable for a given household depends on what the usual

electricity consumption of the household for other appliances looks like. For households

using a lot of energy for areas like space heating or cooling, light or washers and dryers it

might make sense to invest in a larger PV panel.

Another part of the simulation results are the time series, which can be analyzed in inter-

active plots, created by the open-source graphing library Plotly. For simplicity reasons,

four screenshots illustrating representative sections will be discussed in the following.

On each of these screenshots only the relevant time series have been selected to ensure

proper visibility.

Figure 5.1 gives an overview about the heat demand and supply in relation to the tank

52

water temperature for seven days end of June. It can be seen, that the tank temperature

(light blue) stays within the range of about 50 and 75 ◦C and drops every time there is a

heat demand peak (dark blue). The orange data series shows the heat gain delivered by

the heat pump to the hot water tank. It can be clearly noticed, that the heat pump is only

switched on, if the tank water temperature drops below a certain limit and is switched off

as soon as the defined temperature threshold is exceeded. The pink data series denotes

the unmet heat gain, which is always zero.

Figure 5.1: Demand and delivered heat for case (1) and (2)

In Figure 5.2 a closer zoom showing about 24 hours in the beginning of July is illustrated.

Again it is clearly visibly, that the tank temperature (light blue) is following the heat

demand (dark blue, obscured by the brown data series) and falls every time there is a

peak. In this plot, the data series of the delivered heat capacity (brown) has been activated

and is completely covering the data series of the demand heat capacity, since the demand

is always met during this time. Also the data series for the dumped heat capacity (grey)

has been activated and shows two smaller peaks at 12:00 PM and 8:00 PM.

Figure 5.2: Demand and delivered heat for case (1) and (2), close-up

53

Whereas the previous two plots are valid for both cases (1) and (2), since the demand and

the delivered heat capacity are independent of the size of the PV panel, the following two

screenshots are taken from different plots. In Figure 5.3 the electricity generation and

consumption of case (1) is shown. The orange data series is representing the electricity

which is generated by the PV and the pink data series shows the electricity consumption

of the heat pump (both in Figure 5.3 and 5.4).

Figure 5.3: Electricity generation and consumption for case (1)

The main difference between case (1) and (2) is, that in case (2) the amount of available

electricity is much higher (represented by the dark blue data series) and is almost con-

sistently present for the time when the PV is generating electricity. Also, the amount of

electricity coming from the PV used to power the heat pump (brown) is almost always

equal to the electricity consumed by the heat pump (pink). Only at around 5:00 PM,

where the PV’s output power is fading due to the setting sun, the heat pump is not fully

powered by the PV for case (2).

Figure 5.4: Electricity generation and consumption for case (2)

54

Besides case (1) and (2), Table E.1 also shows the annual totals for case (3) and (4).

These cases use the same system configuration as case (1) and (2) respectively, but with a

5 K increased value of the threshold temperature Tlimit, which is used for the heat pump

control scheme illustrated on Figure 3.6 on page 20. The maximum water temperature

Tmax, which the tank is tested for, is used as threshold when to switch off the heat pump.

When increasing this threshold, a few effects can be noticed. For once, the unmet heat

capacity is dropping to zero and the amount of heat provided by the electric resistance

heater (denoted as ”Backup Heat Deliverd)” is roughly cut in half. On the downside, the

amount of dumped heat capacity increases drastically, it is around 13 times more than for

case (1) and (2). Also, the total consumed electricity roughly doubles and the amount of

available electricity drops. Especially for the comparison of case (1) and (3) the reduced

amount of available electricity is significant. Although the solar fraction is rising for an

increased threshold temperature as in case (3) and (4) compared to case (1) and (2),

the fact, that the overall electricity consumption is roughly doubling is a critical design

decision in favor of a lower threshold temperature.

5.2 Next Steps for Web Framework

It has to be pointed out, that the web framework which has been implemented in the

scope of this thesis, is still under development. In the version it has during the time of

writing, the basic use-case has been covered which was the minimum goal of this thesis.

It is possible to set up one or multiple system configurations for both the Solar Electric

and the Solar Thermal System. Also, components can be created and their parameters

and sizes can be defined without having to interact with the source code anymore. Both

the simulation can be invoked through the browser as well as the results can be viewed,

interactively analyzed, and stored using a wide spread open-source graphing library. The

user is able to decide which climate the system is simulated in and for which household

size it is aimed to be used for.

However, during the development several potential features have been identified, which

will be elaborated on in the following. This list can be seen as guideline which next steps

can be taken in order to refine the web framework even further:

55

• Firstly, the author wants to emphasize, that at the time of reading this thesis, some

of the following points, will potentially already have been implemented or won’t be

relevant anymore.

• For the current version of this web framework, there exist several databases, the one

used as Django project database, the one created by the team at LBNL holding the

climate and load data, and an additional one also created by the LBNL project team

holding all kinds of information including component performance parameters and

sizes used for the terminal-based simulation. In the future, these databases might all

be integrated into one single database, potentially the one used as Django project

database, since this database is required anyway in order for a Django project to

work. One or multiple new Django models could be created to hold the data of the

SWH project databases. By doing so, the whole potential of Django can be utilized,

even if the SWH project is further growing.

• As briefly mentioned in Section 4.5, where the usage of the web framework is ex-

plained, the web framework could be deployed on a publicly available server. In

order to do so, a couple of things would need to be considered: First of all, a suit-

able user authentication mechanism would need to be added to the web framework.

Django is fully equipped with the required building blocks, for further reference

about that, see [53]. Secondly, the deployment should not be done by running the

development server, but through a proper deployment platform. The Django docu-

mentation site is advising to use a Web Server Gateway Interface (WSGI) for that

and includes a detailed description of how to get started and set one up in [54].

There are many more important aspects to consider when deploying, like using

HTTPS instead of HTTP, setting the DEBUG parameter to False or defining the list

ALLOWED_HOSTS in the Django settings in settings.py. A comprehensive checklist

can be found in [55].

• The terminal-based simulation of the SWH system model can not only be deployed

for an individual household, but also for the community case, where multiple house-

holds with a different number of occupants and at_home setting (see Section 4.3.3)

are being supplied by a single SWH system. At the time of writing the web

framework does only support the simulation with an individual household as load.

56

In order to accomplish the support for the community case, the Household and

Configuration models need to be extended appropriately.

• Since the main focus during the development of the web framework has been put

on the implementation of the required features, no automatic testing framework

has been integrated yet. The Django documentation recommends using unittest,

which is part of the Python Standard Library for this purpose [56].

• In the current version of the web framework, the parameters field of the Components

model and the data field of both the Climate and Household models have been

implemented as Django model field type TextField, by storing the string repre-

sentation of the data. This method has been chosen due to simplicity reasons and

for being able to move forward faster. Using the parameters field as an example,

a future implementation could be to create a new Parameter Django model with

a key and value field (and possibly a type field) and reference this object from

the Component model instance. This way, it is not only possible to use the same

parameter for multiple components, but also ensure an efficient design of the Django

project database.

At the time of writing the following issues are not resolved yet and are listed here to

give the reader and potential user of the web framework a thorough understanding of the

current state of the web framework.

• When setting up the Django project on a new computer, all Django model ob-

jects have to be created from scratch. The reason for that is not clear. Although

the Django project database has been added to the remote code repository, the

migration of model object is not working as supposed to. This topic needs fur-

ther investigation in order to allow the import of already defined components and

configurations, when setting up the Django project on a new computer.

• At the current state, there is no sanity check of a Configuration model object

in place. That means, when hitting the ”Simulate” button in the Configuration

template home.html, an error appears, if not all necessary components have been

assigned to the Configuration object model. Also, it is not checked if a Climate

and Household model object have been assigned before running the simulation.

57

For this, the Configuraion model type can be used to derive the list of required

components (and backup components) as stored in the SYSTEMS constant in the

file functions.py. The user should not be able to run the simulation, as long as

the Configuration model object has not been assigned all required components, a

climate, and a household.

5.3 Conclusions

In this Master’s Thesis a flexible web framework based on Django has been implemented

in order to simplify the set-up and simulation of complex Python system models. To

demonstrate the benefits and functionality of the web framework, the Python system

model of the SWH project developed by LBNL [1] has served as an example system. In

the scope of this thesis and as adjacent research to the already existing Solar Thermal

System, the Solar Electric System has been implemented both on a component- and

system-level, partly based on the work conducted by the team at LBNL.

By using the implemented web framework, it is possible to create component objects and

set up their parameters and sizes. Additionally, the user can create system configurations

and assign the created components, a climate zone and a household representing a specific

hot water load profile, before invoking the system simulation. Through an interactive

visualization the web framework allows a thorough analysis of the simulation results. All

of that can be done exclusively through a web browser, which essentially simplifies the

process compared to as it would be without the web framework.

The web framework is meeting all main requirements listed in Section 1.2, but is still in

an early stage of development. Thus, the author can not guarantee an error-free usage

of the web framework and therefore has pointed out the most important aspects to be

considered for future work in Section 5.2.

Since the web framework is implemented as a Django-based application, it can also be

used for other system models written in Python, by only adjusting a minimal amount

of source code. This way, not only the team at LBNL but also other researchers and

developers can benefit from the work conducted in this thesis.

58

Acknowledgments

First of all, I would like to express special thanks to my mentor and supervisor Milica

Grahovac, who not only provided the topic for this Master’s Thesis and handled the ad-

ministrative part at LBNL, but was my resourceful and always approachable go to person

throughout the 6 months to discuss ideas. During our weekly meetings and extensive

email correspondence she consistently provided insightful suggestions and great support

while leaving me a generous amount of flexibility.

Also, I’d like to thank Prof. Thomas Hamacher for giving me this exceptional chance to

write my Master’s Thesis in the golden state of California, for his great support during

the definition phase of the thesis, and his trust in me.

For supporting me in finding a topic for my thesis and finally introducing me to Milica,

I would like to thank Thomas Massier, whom I got to know in Singapore during a very

insightful research internship at TUMCREATE.

Furthermore, I very much appreciated the emotional support my parents Barbara and

Peter Bohnengel offered me during countless phone calls, while I was getting some fresh

air in my breaks.

I am very thankful to Edith and Hubert Gerhart for handling the print and submission of

my thesis as well as for proofreading it. Not many have the luck to have such supportive

and devoted parents-in-law.

Finally, without whom I would not be where I am right now, my warmest thanks go to

my wife Stefanie Gerhart for her irreplaceable support, for continuously challenging me

to give my best and for her unconditional love and trust during the last 10 years.

I

List of Figures

1.1 Python SWH modeling framework developed at LBNL 2

1.2 Browser based interactive interface (mock-up) 2

2.1 Django project architecture . 6

3.1 Solar electric system structure . 10

3.2 Duration curves for case (1) . 14

3.3 Direct correlation for case (1) . 14

3.4 Heat pump working principle . 15

3.5 Heat pump performance validation . 17

3.6 Heat pump control cycle . 20

3.7 Electricity generation, usage and surplus . 21

4.1 Project directory structure . 24

4.2 Code excerpt from swhweb/urls.py . 26

4.3 Landing page of the web framework . 27

4.4 Code excerpt from system/admin.py . 28

4.5 Code excerpt from system/functions.py (Map class member variables) 29

4.6 Code excerpt from system/functions.py (components and systems set-up) . 30

4.7 Output of Map class function get_component_choices 31

4.8 Type choices for Component model in Django admin page 31

4.9 Django models and their attributes . 32

4.10 Code excerpt from system/models.py . 33

4.11 Code excerpt from system/views.py . 34

4.12 Conceptual usage of Django’s template language 35

4.13 Rendered list.html template . 36

4.14 Rendered detail.html template . 37

4.15 Rendered edit.html template . 37

4.16 Code excerpt from system/functions.py (household types) 40

4.17 Rendered configuration/home.html template 42

4.18 Data structure holding plot data . 45

4.19 Rendered visualization/home.html template 46

II

5.1 Demand and delivered heat for case (1) and (2) 53

5.2 Demand and delivered heat for case (1) and (2), close-up 53

5.3 Electricity generation and consumption for case (1) 54

5.4 Electricity generation and consumption for case (2) 54

A.1 SAM PVWatts system design . VII

C.1 Import of bootstrap core CSS library . IX

C.2 Import of bootstrap core JavaScript library IX

D.1 Django administration page - Component . X

D.2 Django administration page - Climate . XI

D.3 Django administration page - Household . XI

D.4 Django administration page - Configuration XII

III

List of Tables

2.1 System component classes . 8

3.1 SAM PVWatts model parameters . 13

3.2 SWH PVSimple model parameters . 13

4.1 Component views-to-URL mapping . 38

4.2 Available climate zones in California . 39

4.3 Configuration views-to-URL mapping . 43

B.1 Coefficients for COPhp, rated .VIII

B.2 Coefficients for Qhp, rated .VIII

B.3 Rated performance and tank size .VIII

E.1 Annual totals of solar electric system for different scenariosXIII

E.2 Solar electric system component parametersXIV

IV

List of Symbols

Symbol Meaning Unit

Apanel, eff Effective PV panel area m2

COPhp Coefficient of performance of HP −

COPhp, rated Rated coefficient of performance of HP −

dthyst Temperature hysteresis for HP control scheme ◦C

fhp, perf Performance factor of HP −

I Current solar irradiation W
m2

Iref Reference solar irradiation W
m2

Pel Consumed electrical power of electric resistance heater W

Php Consumed electrical power of HP W

Ppv, peak Rated peak power of PV W

Ppv, ac Generated electrical power of PV W

Qdem, total Total heat demand W

Qel, nom Nominal heating capacity of electric resistance heater W

Qhp Effective heating capacity of HP W

Qhp, rated Rated heating capacity of HP W

RH Relative air humidity −

T Air dry bulb temperature ◦C

Tlimit Maximum temperature for HP control scheme ◦C

Twa Main water temperature ◦C

Twb Air wet bulb temperature ◦C

ηdc, ac DC/AC conversion efficiency −

ηel Electric resistance conversion efficiency −

ηpv PV conversion efficiency −

V

Abbreviations

AC Alternating Current

CDN Content Delivery Network

CEC California Energy Commission

CSS Cascading Style Sheets

COP Coefficient of Performance

DC Direct Current

HP Heat Pump

HPWH Heat Pump Water Heater

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation

IOU Investor Owned Utility

PGE Pacific Gas and Electric

PV Photovoltaic

LBNL Lawrence Berkeley National Laboratory

MTV Model Template View

MVC Model View Controller

NEM Net Energy Metering

NREL National Renewable Energy Laboratory

NSC Net Surplus Compensation

ORM Object Relational Mapper

SAM System Advisor Model

STC Standard Test Conditions

SWH Solar Water Heating

TMY3 Typical Meteorological Year

URL Uniform Resource Location

VCS Version Control System

WSGI Web Server Gateway Interface

VI

A SAMPVWatts Model Configuration

Figure A.1: SAM PVWatts system design

VII

B Heat Pump Specifications

Table B.1: Coefficients for COPhp, rated [28, p. 54]

HPWH Unit C1 C2 C3 C4 C5 C6

[−] [1
◦C

] [1
◦C2] [1

◦C
] [1

◦C2] [1
◦C2]

Unit A 1.229E+00 5.549E-02 1.139E-04 -1.128E-02 -3.570E-06 -7.234E-04

Unit B 1.192E+00 4.247E-02 -3.795E-04 -1.110E-02 -9.400E-07 -2.657E-04

Unit C 6.945E-02 6.601E-03 1.598E-04 8.842E-04 8.170E-06 3.255E-05

Unit D 9.814E-01 5.334E-02 -2.802E-04 -3.073E-03 -1.384E-04 -2.897E-04

Unit E 2.168E+00 8.124E-02 4.786E-04 -4.870E-02 4.284E-04 -1.499E-03

Table B.2: Coefficients for Qhp, rated [28, p. 54]

HPWH Unit C1 C2 C3 C4 C5 C6

[−] [1
◦C

] [1
◦C2] [1

◦C
] [1

◦C2] [1
◦C2]

Unit A 7.055E-01 3.945E-02 1.433E-04 2.768E-03 -1.069E-04 -2.494E-04

Unit B 5.050E-01 5.116E-02 -2.026E-04 5.444E-03 -1.154E-04 -2.472E-04

Unit C 6.879E-01 1.987E-02 7.659E-04 2.621E-03 5.323E-05 -5.210E-04

Unit D 5.101E-01 3.588E-02 5.563E-05 4.828E-03 -1.348E-04 7.738E-05

Unit E 9.285E-01 4.088E-02 2.737E-04 -3.625E-03 -6.521E-05 -2.986E-04

Table B.3: Rated performance (for Twb = 14 ◦C and Twa = 48.9 ◦C)

and tank size [28, pp. 10, 54]

HPWH Unit COPhp, rated Qhp, rated Qaux, combined Tank size

[W] [W] [Gallons]

Unit A 2.43 2350 6500 80

Unit B 2.76 1380 9000 50

Unit C 2.42 2670 4000 50

Unit D 2.77 1820 1700 80

Unit E 2.02 2040 4000 66

VIII

C Bootstrap Core Libraries

1 <!-- Offline use case -->
2 <link href="{% static ’css/bootstrap.min.css ’ %}" rel="stylesheet">
3
4 <!-- Online use case -->
5 <link rel="stylesheet" href="https :// stackpath.bootstrapcdn.com/

bootstrap /4.3.1/ css/bootstrap.min.css" integrity="sha384 -
ggOyR0iXCbMQv3Xipma34MD+dH/1 fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">

Figure C.1: Import of bootstrap core CSS library

1 <!-- Offline use case -->
2 <script src="{% static ’js/jquery -slim.min.js’ %}"></script >
3 <script src="{% static ’js/popper.min.js’ %}"></script >
4 <script src="{% static ’js/bootstrap.min.js’ %}"></script >
5
6 <!-- Online use case -->
7 <script src="https :// code.jquery.com/jquery -3.3.1. slim.min.js" integrity

="sha384 -q8i/X+965 DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH +8
abtTE1Pi6jizo" crossorigin="anonymous"></script >

8 <script src="https :// cdnjs.cloudflare.com/ajax/libs/popper.js /1.14.7/ umd
/popper.min.js" integrity="sha384 -
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
crossorigin="anonymous"></script >

9 <script src="https :// stackpath.bootstrapcdn.com/bootstrap /4.3.1/ js/
bootstrap.min.js" integrity="sha384 -
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script >

Figure C.2: Import of bootstrap core JavaScript library

IX

D Django Model Administration Pages

Figure D.1: Django administration page - Component

X

Figure D.2: Django administration page - Climate

Figure D.3: Django administration page - Household

XI

Figure D.4: Django administration page - Configuration

XII

E Solar Electric System - Simulations

Table E.1: Annual totals of solar electric system for different scenarios

A_pv = 6.67 m² A_pv = 26.67 m²

T_limit =
T_max

T_limit =
T_max + 5 K

T_limit =
T_max

T_limit =
T_max + 5 K

(1) (3) (2) (4)

Solar Fraction [%] 34.30 42.50 57.30 85.70
Net Heat Demand [kWh] 4,606.57 4,606.57 4,606.57 4,606.57
Heat Pump Gain Delivered To Tank [kWh] 6,214.75 10,695.36 6,214.75 10,695.36
Backup Heat Delivered [kWh] 23.98 12.42 23.98 12.42
Heat Loss - Lower Tank Volume [kWh] 601.36 646.64 601.36 646.64
Heat Loss - Upper Tank Volume [kWh] 639.29 671.17 639.29 671.17
Tank Heat Delivered [kWh] 4,595.13 4,607.73 4,595.13 4,607.73
Tank Unmet Heat [kWh] 24.31 12.42 24.31 12.42
Dumped Heat [kWh] 366.53 4,756.65 366.53 4,756.65
Tank Balancing Error (Heat Rate) [kWh] 0.00 0.00 0.00 0.00
PV Generated Power [kWh] 1,612.76 1,612.76 6,448.63 6,448.63
PV Generated Power (DC) [kWh] 1,897.37 1,897.37 7,586.63 7,586.63
Total Heat Delivered [kWh] 6,238.73 10,707.78 6,238.73 10,707.78
Unmet Heat [kWh] 0.32 0.00 0.32 0.00
Energy Use - PV to Heat Pump [kWh] 1,015.89 1,608.96 1,696.81 3,242.48
Energy Use - Heat Pump [kWh] 4,002.98 8,793.94 4,002.98 8,793.94
Energy Use - Electric Resistance [kWh] 23.98 12.42 23.98 12.42
Energy Use - Electricity [kWh] 4,026.96 8,806.35 4,026.96 8,806.35
Energy Use - PV to Electric Resistance [kWh] 1.15 0.49 6.17 2.81
Available Electricity [kWh] 595.72 3.31 4,745.65 3,203.35
Temperature - Upper Tank Volume [°C] 65.87 68.47 65.87 68.47
Temperature - Lower Tank Volume [°C] 62.78 66.47 62.78 66.47
Temperature - Main Water [°C] 12.59 12.59 12.59 12.59
Temperature - Ambient Air (Dry Bulb) [°C] 13.75 13.75 13.75 13.75
Temperature - Ambient Air (Wet Bulb) [°C] 11.13 11.13 11.13 11.13

XIII

Table E.2: Solar electric system component parameters

Component Parameter Value

Inverter ηdc, ac 0.85

Photovoltaic Panel ηpv 0.15

Apanel, eff 6.67 m2 (1) / 26.67 m2 (2)

fact
1 1.00

Iref 1000.00 W
m2

Heat Pump2 COPhp, rated 2.77

Qhp, rated 1820.00 W

Electric Resistance Heater ηel 1.0

Qel, nom 1700.00 W

Heat Pump Tank3 tank_size 0.302833 m3(= 80.0 gal)

f_upper_vol 0.50

ins_thi 0.04 m

spec_hea_con 0.04 W
mK

t_tap_set 322.04 K

h_vs_r 6.00

dt_appr 2.00 K

t_max_tank 344.15 K

Piping3 pipe_spec_hea_con 0.03 W
mK

pipe_ins_thick 0.006 m

dia_len_slope 0.0002381 m

dia_len_interc 0.0097619 m

1This parameter describes the fraction of the area of actual PV cells compared to the total PV panel

area. fact = 1.00 means that it is assumed, that there is no area lost (e.g. for mounting frames).

2For the coefficients, see Unit D in Table B.1 and B.2.

3The empiric models for these components have been implemented by the team at LBNL, so their

parameters are not further explained in the scope of this thesis. These parameters have been assigned

representative example values (unequal those in the final implementation). For further details see [1].

XIV

References

[1] To be published as a CEC report on Community vs. Individual Scale Solar Water Heating

(working title). Berkeley, CA: Lawrence Berkeley National Laboratory, 2019.

[2] Python Documentation - What’s new. [Online]. Available: https://docs.python.org/3/

whatsnew/3.7.html (visited on 02/05/2019).

[3] Python Source Code - History. [Online]. Available: https://raw.githubusercontent.

com/python/cpython/master/Misc/HISTORY (visited on 02/05/2019).

[4] Python Package Index. [Online]. Available: https://pypi.org/ (visited on 03/18/2019).

[5] The Incredible Growth of Python. [Online]. Available: https://stackoverflow.blog/

2017/09/06/incredible-growth-python/ (visited on 02/05/2019).

[6] Medium - Why You Should Use Python. [Online]. Available: https : / / medium . com /

@mindfiresolutions.usa/python- 7- important- reasons- why- you- should- use-

python-5801a98a0d0b (visited on 02/05/2019).

[7] Project Jupyter. [Online]. Available: https://jupyter.org/ (visited on 03/12/2019).

[8] PyCharm - The Python IDE for Professional Developers. [Online]. Available: https://

www.jetbrains.com/pycharm/ (visited on 03/12/2019).

[9] Django Project. [Online]. Available: https : / / www . djangoproject . com/ (visited on

03/14/2019).

[10] Django Deployment Statistics. [Online]. Available: https : / / www . djangosites . org /

stats/ (visited on 03/18/2019).

[11] G. E. Krasner and S. T. Pope, “A Cookbook for Using Model-View-Controller User Inter-

face Paradigm in Smalltalk-80,” Journal of Object Oriented Programming, vol. 1, pp. 26

–49, Aug. 1988, issn: 0896-8438. [Online]. Available: http://dl.acm.org/citation.cfm?

id=50757.50759.

[12] Django Documentation - FAQ. [Online]. Available: https://docs.djangoproject.com/

en/2.1/faq/general/ (visited on 02/11/2019).

[13] Django Model View Template Pattern. [Online]. Available: http://wiki.expertiza.ncsu.

edu/index.php/CSC/ECE_517_Fall_2014/ch1a_8_os (visited on 02/11/2019).

[14] Django Documentation - URLs. [Online]. Available: https://docs.djangoproject.com/

en/2.1/topics/http/urls/ (visited on 02/11/2019).

[15] Django Documentation - Views. [Online]. Available: https://docs.djangoproject.com/

en/2.1/topics/http/views/ (visited on 02/11/2019).

XV

https://docs.python.org/3/whatsnew/3.7.html
https://docs.python.org/3/whatsnew/3.7.html
https://raw.githubusercontent.com/python/cpython/master/Misc/HISTORY
https://raw.githubusercontent.com/python/cpython/master/Misc/HISTORY
https://pypi.org/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://medium.com/@mindfiresolutions.usa/python-7-important-reasons-why-you-should-use-python-5801a98a0d0b
https://medium.com/@mindfiresolutions.usa/python-7-important-reasons-why-you-should-use-python-5801a98a0d0b
https://medium.com/@mindfiresolutions.usa/python-7-important-reasons-why-you-should-use-python-5801a98a0d0b
https://jupyter.org/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.djangoproject.com/
https://www.djangosites.org/stats/
https://www.djangosites.org/stats/
http://dl.acm.org/citation.cfm?id=50757.50759
http://dl.acm.org/citation.cfm?id=50757.50759
https://docs.djangoproject.com/en/2.1/faq/general/
https://docs.djangoproject.com/en/2.1/faq/general/
http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_517_Fall_2014/ch1a_8_os
http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_517_Fall_2014/ch1a_8_os
https://docs.djangoproject.com/en/2.1/topics/http/urls/
https://docs.djangoproject.com/en/2.1/topics/http/urls/
https://docs.djangoproject.com/en/2.1/topics/http/views/
https://docs.djangoproject.com/en/2.1/topics/http/views/

[16] Django Documentation - Templates. [Online]. Available: https://docs.djangoproject.

com/en/2.1/topics/templates/ (visited on 02/11/2019).

[17] Django Documentation - Models. [Online]. Available: https://docs.djangoproject.com/

en/2.1/topics/db/models/ (visited on 02/11/2019).

[18] S. V. Raghavan, M. Wei, and D. M. Kammen, “Scenarios to decarbonize residential water

heating in California,” Energy Policy, vol. 109, pp. 441 –451, 2017, issn: 0301-4215. doi:

https://doi.org/10.1016/j.enpol.2017.07.002. [Online]. Available: http://www.

sciencedirect.com/science/article/pii/S0301421517304329.

[19] M. Grahovac, “Modeling and Optimization of Energy Generation and Storage Systems for

Thermal Conditioning of Buildings Targeting Conceptual Building Design,” PhD thesis,

Dec. 2012. [Online]. Available: https://www.researchgate.net/publication/325256005

(visited on 03/15/2019).

[20] M. Grahovac, P. Liedl, J. Frisch, and P. Tzscheutschler, “On-Off Boiler, Thermal Storage

and Solar Collector: Energy Balance Based Model and its Optimization,” Oct. 2011. [On-

line]. Available: https://www.researchgate.net/publication/265288877 (visited on

03/15/2019).

[21] M. Grahovac, “VC Chillers and PV Panels: A Generic Planning Tool Providing the Optimal

Dimensions to Minimize Costs or Emissions,” Nov. 2012. [Online]. Available: https://www.

researchgate.net/publication/325256010 (visited on 03/15/2019).

[22] Electric Utilities Service Areas. [Online]. Available: https://www.energy.ca.gov/maps/

serviceareas/CA_Electric_IOU.pdf (visited on 03/13/2019).

[23] PGE - How to read your solar bill. [Online]. Available: https://www.pge.com/en_

US / residential / solar - and - vehicles / green - energy - incentives / solar - and -

renewable-metering-and-billing/how-to-read-your-bill/how-to-read-your-

bill.page (visited on 03/13/2019).

[24] PGE - Electric Tariffs. [Online]. Available: https://www.pge.com/tariffs/electric.

shtml (visited on 03/13/2019).

[25] Alterra Solar - True-Up Breakdown. [Online]. Available: https://www.allterrasolar.

com/making-sense-of-your-annual-bill-after-going-solar/ (visited on 03/13/2019).

[26] PGE - True-Up Statement Explanation. [Online]. Available: https://www.pge.com/

includes/docs/pdfs/myhome/saveenergymoney/solarenergy/billing- callouts-

trueup.pdf (visited on 03/13/2019).

XVI

https://docs.djangoproject.com/en/2.1/topics/templates/
https://docs.djangoproject.com/en/2.1/topics/templates/
https://docs.djangoproject.com/en/2.1/topics/db/models/
https://docs.djangoproject.com/en/2.1/topics/db/models/
https://doi.org/https://doi.org/10.1016/j.enpol.2017.07.002
http://www.sciencedirect.com/science/article/pii/S0301421517304329
http://www.sciencedirect.com/science/article/pii/S0301421517304329
https://www.researchgate.net/publication/325256005
https://www.researchgate.net/publication/265288877
https://www.researchgate.net/publication/325256010
https://www.researchgate.net/publication/325256010
https://www.energy.ca.gov/maps/serviceareas/CA_Electric_IOU.pdf
https://www.energy.ca.gov/maps/serviceareas/CA_Electric_IOU.pdf
https://www.pge.com/en_US/residential/solar-and-vehicles/green-energy-incentives/solar-and-renewable-metering-and-billing/how-to-read-your-bill/how-to-read-your-bill.page
https://www.pge.com/en_US/residential/solar-and-vehicles/green-energy-incentives/solar-and-renewable-metering-and-billing/how-to-read-your-bill/how-to-read-your-bill.page
https://www.pge.com/en_US/residential/solar-and-vehicles/green-energy-incentives/solar-and-renewable-metering-and-billing/how-to-read-your-bill/how-to-read-your-bill.page
https://www.pge.com/en_US/residential/solar-and-vehicles/green-energy-incentives/solar-and-renewable-metering-and-billing/how-to-read-your-bill/how-to-read-your-bill.page
https://www.pge.com/tariffs/electric.shtml
https://www.pge.com/tariffs/electric.shtml
https://www.allterrasolar.com/making-sense-of-your-annual-bill-after-going-solar/
https://www.allterrasolar.com/making-sense-of-your-annual-bill-after-going-solar/
https://www.pge.com/includes/docs/pdfs/myhome/saveenergymoney/solarenergy/billing-callouts-trueup.pdf
https://www.pge.com/includes/docs/pdfs/myhome/saveenergymoney/solarenergy/billing-callouts-trueup.pdf
https://www.pge.com/includes/docs/pdfs/myhome/saveenergymoney/solarenergy/billing-callouts-trueup.pdf

[27] PGE - NEM Process and Requirements. [Online]. Available: https://www.pge.com/

en_US/for-our-business-partners/interconnection-renewables/simple-solar-

wind/contractor-resources/standard-nem-process-and-requirements.page (visited

on 03/13/2019).

[28] B. Sparn, K. Hudon, and D. Christensen, Laboratory Performance Evaluation of Residen-

tial Integrated Heat Pump Water Heaters. Golden, Colorado: National Renewable Energy

Laboratory, 2014.

[29] Modelica Buildings Library - Photovoltaic Model. [Online]. Available: http://simulationresearch.

lbl.gov/modelica/releases/latest/help/Buildings_Electrical_AC_OnePhase_

Sources.html#Buildings.Electrical.AC.OnePhase.Sources.PVSimple (visited on

02/26/2019).

[30] Modelica Buildings Library. [Online]. Available: http://simulationresearch.lbl.gov/

modelica/ (visited on 02/26/2019).

[31] PVWatts Calculator. National Renewable Energy Laboratory. [Online]. Available: https:

//pvwatts.nrel.gov/ (visited on 02/27/2019).

[32] System Advisor Model Version 2017.9.5 (SAM 2017.9.5). Golden, CO: National Renewable

Energy Laboratory. [Online]. Available: https://sam.nrel.gov/content/downloads

(visited on 02/26/2019).

[33] Introduction to Heat Pumps. [Online]. Available: https://www.automaticheating.com.

au/heat-pumps-explained/ (visited on 02/28/2019).

[34] Heat Pump Working Principle. [Online]. Available: https://commons.wikimedia.org/

wiki/File:Heatpump2.svg (visited on 02/28/2019).

[35] Coefficient of Performance. [Online]. Available: https://us.grundfos.com/service-

support/encyclopedia- search/cop- coefficient- ofperformance.html (visited on

02/28/2019).

[36] Typical Meteorological Year 3. [Online]. Available: https://rredc.nrel.gov/solar/old_

data/nsrdb/1991-2005/tmy3/ (visited on 02/28/2019).

[37] 2016 ACM Supporting Content (weather data). [Online]. Available: https://www.energy.

ca.gov/title24/2016standards/ACM_Supporting_Content/ (visited on 02/28/2019).

[38] R. Stull, “Wet-Bulb Temperature from Relative Humidity and Air Temperature,” Journal

of Applied Meteorology and Climatology, vol. 50, pp. 2267–2269, Nov. 2011. doi: 10.1175/

JAMC-D-11-0143.1.

[39] Electric Resistance Heating. [Online]. Available: https://www.energy.gov/energysaver/

home-heating-systems/electric-resistance-heating (visited on 02/28/2019).

XVII

https://www.pge.com/en_US/for-our-business-partners/interconnection-renewables/simple-solar-wind/contractor-resources/standard-nem-process-and-requirements.page
https://www.pge.com/en_US/for-our-business-partners/interconnection-renewables/simple-solar-wind/contractor-resources/standard-nem-process-and-requirements.page
https://www.pge.com/en_US/for-our-business-partners/interconnection-renewables/simple-solar-wind/contractor-resources/standard-nem-process-and-requirements.page
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Electrical_AC_OnePhase_Sources.html#Buildings.Electrical.AC.OnePhase.Sources.PVSimple
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Electrical_AC_OnePhase_Sources.html#Buildings.Electrical.AC.OnePhase.Sources.PVSimple
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Electrical_AC_OnePhase_Sources.html#Buildings.Electrical.AC.OnePhase.Sources.PVSimple
http://simulationresearch.lbl.gov/modelica/
http://simulationresearch.lbl.gov/modelica/
https://pvwatts.nrel.gov/
https://pvwatts.nrel.gov/
https://sam.nrel.gov/content/downloads
https://www.automaticheating.com.au/heat-pumps-explained/
https://www.automaticheating.com.au/heat-pumps-explained/
https://commons.wikimedia.org/wiki/File:Heatpump2.svg
https://commons.wikimedia.org/wiki/File:Heatpump2.svg
https://us.grundfos.com/service-support/encyclopedia-search/cop-coefficient-ofperformance.html
https://us.grundfos.com/service-support/encyclopedia-search/cop-coefficient-ofperformance.html
https://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
https://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
https://www.energy.ca.gov/title24/2016standards/ACM_Supporting_Content/
https://www.energy.ca.gov/title24/2016standards/ACM_Supporting_Content/
https://doi.org/10.1175/JAMC-D-11-0143.1
https://doi.org/10.1175/JAMC-D-11-0143.1
https://www.energy.gov/energysaver/home-heating-systems/electric-resistance-heating
https://www.energy.gov/energysaver/home-heating-systems/electric-resistance-heating

[40] Bootstrap - A Front-end Component Library. [Online]. Available: https://getbootstrap.

com/ (visited on 03/10/2019).

[41] Django Documentation - Settings. [Online]. Available: https://docs.djangoproject.

com/en/2.1/ref/settings/ (visited on 03/14/2019).

[42] Django Documentation - Cryptographic Signing. [Online]. Available: https://docs.djangoproject.

com/en/2.1/topics/signing/ (visited on 03/14/2019).

[43] Django Documentation - Template Language. [Online]. Available: https://docs.djangoproject.

com/en/2.1/ref/templates/language/ (visited on 03/14/2019).

[44] Python Documentation - Pickle Module. [Online]. Available: https://docs.python.org/

3/library/pickle.html (visited on 03/11/2019).

[45] Plotly. [Online]. Available: https://plot.ly/ (visited on 03/12/2019).

[46] Plotly Python Open Source Graphing Library. [Online]. Available: https://plot.ly/

python/ (visited on 03/12/2019).

[47] Plotly Javascript Open Source Graphing Library. [Online]. Available: https://plot.ly/

javascript/ (visited on 03/12/2019).

[48] Plotly Chart Studio. [Online]. Available: https://plot.ly/create/ (visited on 03/12/2019).

[49] Anaconda Project. [Online]. Available: https://www.anaconda.com/ (visited on 03/12/2019).

[50] Anaconda Project- Documentation. [Online]. Available: https://docs.anaconda.com/

anaconda/ (visited on 03/12/2019).

[51] DigitalOcean. [Online]. Available: https://www.digitalocean.com/ (visited on 03/14/2019).

[52] DigitalOcean - How To Set Up Django with Postgres, Nginx, and Gunicorn on Ubuntu

18.04. [Online]. Available: https://www.digitalocean.com/community/tutorials/how-

to-set-up-django-with-postgres-nginx-and-gunicorn-on-ubuntu-18-04 (visited

on 03/14/2019).

[53] Django Documentation - User Authentication. [Online]. Available: https://docs.djangoproject.

com/en/2.1/topics/auth/ (visited on 03/16/2019).

[54] Django Documentation - Deploy with WSGI. [Online]. Available: https://docs.djangoproject.

com/en/2.1/howto/deployment/wsgi/ (visited on 03/16/2019).

[55] Django Documentation - Deployment Checklist. [Online]. Available: https://docs.djangoproject.

com/en/2.1/howto/deployment/checklist/ (visited on 03/16/2019).

[56] Django Documentation - Testing. [Online]. Available: https://docs.djangoproject.com/

en/2.1/topics/testing/ (visited on 03/16/2019).

XVIII

https://getbootstrap.com/
https://getbootstrap.com/
https://docs.djangoproject.com/en/2.1/ref/settings/
https://docs.djangoproject.com/en/2.1/ref/settings/
https://docs.djangoproject.com/en/2.1/topics/signing/
https://docs.djangoproject.com/en/2.1/topics/signing/
https://docs.djangoproject.com/en/2.1/ref/templates/language/
https://docs.djangoproject.com/en/2.1/ref/templates/language/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://plot.ly/
https://plot.ly/python/
https://plot.ly/python/
https://plot.ly/javascript/
https://plot.ly/javascript/
https://plot.ly/create/
https://www.anaconda.com/
https://docs.anaconda.com/anaconda/
https://docs.anaconda.com/anaconda/
https://www.digitalocean.com/
https://www.digitalocean.com/community/tutorials/how-to-set-up-django-with-postgres-nginx-and-gunicorn-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-django-with-postgres-nginx-and-gunicorn-on-ubuntu-18-04
https://docs.djangoproject.com/en/2.1/topics/auth/
https://docs.djangoproject.com/en/2.1/topics/auth/
https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/
https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/
https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.1/topics/testing/
https://docs.djangoproject.com/en/2.1/topics/testing/

	Introduction
	Motivation
	Goals and Requirements
	Thesis Structure

	Essentials
	Django Web Framework
	Solar Water Heating Project
	Overview
	System Modeling
	Solar Billing – True-Up Statement

	Solar Electric System Implementation
	System Overview
	Component Models
	Photovoltaic
	Inverter
	Heat Pump
	Electric Resistance Heater
	Heat Pump Tank

	Solar Electric System Model

	Web Framework Implementation
	Project Structure
	Integration of SWH code
	Models
	Component
	Climate
	Household
	Configuration
	Visualization

	Set-Up
	Usage

	Results and Outlook
	Simulation Results of Solar Electric System
	Next Steps for Web Framework
	Conclusions

	Acknowledgments
	List of Figures
	List of Tables
	List of Symbols
	Abbreviations
	Appendix SAM PVWatts Model Configuration
	Appendix Heat Pump Specifications
	Appendix Bootstrap Core Libraries
	Appendix Django Model Administration Pages
	Appendix Solar Electric System - Simulations
	References

